
HTC Vive: Analysis and Accuracy Improvement

Miguel Borges?�, Andrew Symington†, Brian Coltin†, Trey Smith‡, Rodrigo Ventura?

Abstract— HTC Vive has been gaining attention as a cost-
effective, off-the-shelf tracking system for collecting ground
truth pose data. We assess this system’s pose estimation through
a series of controlled experiments where we show its precision
to be in the millimeter magnitude and accuracy to range from
millimeter to meter. We also show that Vive gives greater
weight to inertial measurements in order to produce a smooth
trajectory for virtual reality applications. Hence, the Vive’s off
the shelf algorithm is poorly suited for robotics applications
such as measuring ground truth poses, where accuracy and
repeatability are key. Therefore we introduce a new open-
source tracking algorithm and calibration procedure for Vive
which address these problems. We also show that our approach
improves the pose estimation repeatability and accuracy by up
to two orders of magnitude.

I. INTRODUCTION

The HTC Vive is a consumer headset and accompanying
motion capture system designed for virtual reality (VR)
applications [1]. Motion capture describes the process of
estimating absolute position and orientation — or pose —
in real-time, and has many applications in film, medicine,
engineering [2], and notably robotics.

The Vive system is comprised of lighthouses that emit
synchronized light sweeps, and trackers that use photodiodes
to measure light pulse timings as a proxy for estimating the
horizontal and vertical angles to lighthouses. The trackers
fuse angle measurements from a bundle of rigid photodiodes
together to estimate the pose using a technique similar to
Angle-of-Arrival [3]. The tracker also has access to motion
data from an incorporated Inertial Measurement Unit (IMU)
to maintain a smooth and continuous trajectory.

The Vive system provides a compelling means of obtaining
ground truth data for roboticists: it is more affordable than
competing technologies, it is straightforward to set up and
use, and a Robotics Operating System (ROS) driver already
exists for integration with an ecosystem of robotic tools.

For the reasons above, Vive was chosen as a source
of ground truth for testing the Astrobee robots (Fig. 1).
Astrobees [4] are free-flying robots that will be deployed
to the International Space Station in 2018 to be used as a
research platform for free-flying robots1. Ideally, the system
should exhibit error in the millimeter range in order to be
able to benchmark Astrobee’s localization algorithms [5], to
test Astrobee’s robotic arm and to improve on the available

?Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico,
Universidade de Lisboa
†SGT Inc., NASA Ames Research Center
‡NASA Ames Research Center
�miguel.r.borges@tecnico.ulisboa.pt
1Astrobee flight software available open source at

https://github.com/nasa/astrobee

Fig. 1. Astrobee (1) shown on a level granite surface (2), which is used
to simulate a 2D microgravity environment. The prototype has trackers
mounted to its port and starboard sides (3), and a single lighthouse (4)
mounted overhead.

tracking systems (VisualEyez with an in-house developed
pose estimation algorithm and QR codes with overhead
camera).

The first contribution of this paper is an analysis of Vive’s
static precision and dynamic precision and accuracy. We
show that although the original system has a sub-millimeter
precision with the trackers in a static state, when that state is
dynamic, the precision worsens by one order of magnitude.
We also show experimentally that the accuracy of this system
can vary from a few millimeters up to a meter in a dynamic
situation.

We attribute the high error to the closed-source fusion
algorithm giving higher weight to the inertial measurements,
thus minimizing jitter to the VR user. Motivated by this
and by not having access to the source code of Vive’s
algorithms, the second contribution of this paper is a set
of algorithms for Vive that improve on the accuracy and
stability while providing an open-source platform that is easy
for the user to change. These algorithms are used to compute
the trackers’ poses and for the calibration procedure that
relates the lighthouses with the user’s workspace. We show
that our tracking methods, although less smooth, are able to
outperform Vive’s built-in algorithms in accuracy by up to
two orders of magnitude.



II. MOTION CAPTURE

Vive is one of many motion capture systems available
on the market. Examples of other systems include VICON,
OptiTrack and VisualEyez. VICON and OptiTrack use cam-
eras to track reflective markers illuminated by infrared light
sources. VICON quotes accuracy levels of up to 76 µm and
precision (noise) of 15 µm in a four camera configuration [6].
OptiTrack claims that its system can achieve accuracy levels
of less than 0.3 mm for robotic tracking systems. VisualEyez
uses a three-camera system to track active LED markers, and
is reported to have millimeter-level precision [7]. The key
issue with these tracking systems is that they are prohibitively
expensive for general use.

Reliable motion capture is an essential component of
an immersive VR experience. As the technology grows in
popularity so the cost of equipment falls. We are now at a
point where off-the-shelf VR devices are providing a feasible
alternative for motion capture in the context of robotics.
Examples of VR systems that offer motion capture include
Oculus Rift [8] and HTC Vive.

HTC Vive’s pose estimation has a similar working prin-
ciple to the Angle of Arrival (AoA) localization techniques
[9] used in Wireless Sensor Networks (WSN). AoA based
localization resorts to arrays of antennas to estimate the angle
of the received signal. From this interaction between multiple
nodes, it is possible to estimate their location. Vive’s trackers
however, estimate the angle of the lighthouse through a time
difference, as is explained in the next section.

In [1], the authors evaluate Vive’s accuracy, however they
focus on research with the headset. They do not mention how
the trackers and controllers behave. These two devices are
more appealing for roboticists. It is therefore unclear how
Vive behaves as a ground truth tracking system for robotic
applications.

III. PROBLEM DESCRIPTION

We intend to use Vive as a means of obtaining Astrobee’s
ground truth. Our desired accuracy is one order of magnitude
greater than the robot’s current localization algorithm, which
is expected to have an accuracy in the centimeter range.

As a tracking system, Vive’s desired outputs are the poses
of the trackers. In order to compute this, the system has as
inputs inertial measurements (from the IMU in each tracker)
and light data (from the photodiodes in the trackers).

The light data may be of two types — a synchronization
flash or an infrared sweeping plane (red line in Fig. 2). Both
these light signals are emitted by the lighthouse (the fixed
base station). Every cycle starts with the synchronization
pulse, modulated with low-rate metadata containing calibra-
tion parameters for correcting the sweeping plane, followed
by an infrared rotating planar laser. The tracker’s photodiodes
detect both these signals and are able to estimate the angle
(α in Fig. 2) between the lighthouse’s normal vector and
the photodiode with the time difference because the laser
rotates at a constant angular velocity. This cycle happens for
a horizontally and a vertically rotating laser. From both these
angles, Vive can estimate the tracker’s absolute pose.

Fig. 2. Side view of HTC Vive working principle with α being the angle
between a sweeping plane and the normal vector to the lighthouse.

The inertial data is composed of linear accelerations and
angular velocities. But since this comes from a consumer
grade IMU, the measurements are very noisy.

There are multiple frames associated with this problem.
Both the lighthouse and the tracker have their own frames, l
and t respectively. For clarity, the lighthouse is represented
as li instead of l in Fig. 3, where i is its index. An auxiliary
frame vive, v, is selected to always be coincident with one
of the lighthouses’ frames — chosen during the calibration
procedure. This procedure allows the system to relate the
poses of the lighthouses, in the case multiple lighthouses are
being used. It also allows the user to choose the world frame
w. The final output of Vive is a rigid-body transform between
a tracker frame and the world frame, represented by a red
arrow in Fig. 3.

Fig. 3. Frames involved in Vive’s pose estimation.

We use the standard notation for transforms from [10],
where aTb is a rigid-body transform from frame b to a (or
pose of b in frame a). We will also be mentioning aPb and
aP̃b, which are the position of frame b relatively to a in
cartesian and homogeneous coordinates, respectively.

IV. VIVE ANALYSIS

In order to evaluate the performance of Vive as ground
truth tracking system, we performed two sets of tests where
we measured the system’s precision and accuracy. For these
experiments, two lighthouses were attached to the top of
consecutive walls of a two meter cubic workspace with a
granite level ground surface. The lighthouses were facing
45◦ downwards in order to maximize our working volume.

A. Stationary Performance

First, we assess how precise the system is in a static
configuration. We placed a tracker on a still surface and
recorded the returned poses. The position’s standard devi-
ation recorded is always less than 0.5 mm, as we show



in Table I of section VI, meaning that Vive achieves sub-
millimeter precision in a static configuration. We will see
however, that the performance degrades with the trackers in
motion.

B. Dynamic Performance

In order to evaluate the performance of the system in the
mentioned state, we took advantage of the fact that Astrobee
is in a support that floats in a granite level surface with
compressed air thrusters [11]. While the robot floats across
the granite surface, the height of any part is constant because
the surface has been precisely machined to be leveled.
This surface is used to simulate a confined 2D zero-gravity
environment. As we show in Table II in section VI, we
evaluate the deviation between tracker’s sample points and
a plane fit to its trajectory. We also provide an orientation
estimation evaluation in the same table.

The results show how unstable the system is and how the
accuracy can vary from 1 mm to 43 mm and even 802 mm in
the worst case. In order to use Vive to benchmark Astrobee’s
localization algorithms and also to evaluate its robotic arm’s
grasp, our desired accuracy is in the millimeter magnitude.
We suspect that in order to improve the experience for the
VR user, this system gives the inertial data a high weight in
order to reduce the jitter. This pushed us towards developing
our own algorithms, tuned for robotic applications.

V. TRACKING ALGORITHMS

The new software platform, in Fig. 4, is composed of two
main ROS nodes, the Bridge and the Server. The Bridge
uses deepdive2 to pull light and IMU data from the tracker
through a USB connection and then sends it to the Server.
The Server then passes that data to the Calibrator or APE
(Absolute Pose Estimator), depending on its current state.
These states can be Calibrating — determining the relative
rigid-body transforms between the lighthouses and the world
frame using the Calibrator — or Tracking — real time pose
solving using the APE.

Fig. 4. Diagram of the system.

2deepdive is available open source at
https://github.com/asymingt/deepdive

A. Pose Tracking

The APE is our algorithm that estimates full poses of a
tracker in real-time, using only light data. It finds the best fit
between a pose and the available data with a non-linear least-
squares method that incorporates the model of the system. In-
ertial data is also recorded, however we did not use it because
first we are looking for a satisfactory result. The correction
parameters modulated in the synchronization pulses are also
not used for the same reason as the inertial data. Including
the IMU data and the sweeping laser correction parameters
in the algorithm will therefore be left for future work.

The model of this system is a function that returns a
horizontal and a vertical angle based on the relative position
between a tracker’s photodiode and the lighthouse. This
position is obtained through a series of rigid-body frame
transforms that convert the photodiode’s coordinates from
the tracker’s frame to the lighthouse’s:

lP̃p = lTv
vTt

tP̃p (1)

where p is the photodiode, l the lighthouse, v the vive frame
and t the tracker. The position of the photodiode tP̃p is
already known from the start due to a factory calibration.

In order to obtain the relative horizontal and vertical angle
between a photodiode and the lighthouse’s normal vector,
we have to use the three photodiode’s coordinates separately
as in (2). The lP x

p , lP x
p and lP x

p terms are the x, y and z
coordinates of lPp and the top expression is for the horizontal
axis while the bottom one is for the vertical one. This
expression is a formalization of what was explained in a
previous section with Fig. 2.

h
(
lPp

)
=


arctan

(
lPy

p
lP z

p

)
arctan

(
lPx

p
lP z

p

) (2)

In order to compute the pose of the tracker we use a sum
of of squared-differences between the photodiode’s recorded
angles (αp) and the estimated angles. This is a non-convex
optimization problem however, using an optimizer 3, we
are able to get results quickly enough to achieve real-time
tracking. The cost function is the following:

fAPE =

M∑
l=1

N∑
p=1

[hp,l (vTt) − αp]
2 (3)

where hp,l (·) is function (2) with (1) as the input argument
after converting it to cartesian coordinates.

Our cost function uses the data from all the lighthouses at
the same time in order to increase the stability of the solution,
however for the horizontal axis, we have to negate the
recorded angles (−αhorizontal

p ) due to the rotation direction
of the lighthouse’s laser.

Our algorithm also takes advantage of Vive’s high sam-
pling rate by initializing the optimizer at the last computed

3Ceres-Solver is available at http://ceres-solver.org



pose as a means of making the estimation process faster.
For the first estimation done by the algorithm, we use an
arbitrary starting pose in front of one lighthouses, to make
sure it doesn’t converge to a pose behind it.

In order to prevent outliers and old data from influencing
the estimation we included the following restrictions: all
measured angles with magnitude greater than 60 degrees are
rejected, there must be at least 4 measured angles from the
most recently detected lighthouse and all samples older than
50 ms are not used in the case they are not from the most
recently detected lighthouse, otherwise the APE skips the
estimation of this pose.

The cost function (3) is fairly complex and the optimizer
may sporadically diverge or converge into a local minimum.
In order to prevent wrong estimations, we included one
more verification before providing the solution to the user:
it checks the cost function’s cost and if it is bigger than
a threshold linearly related with the number of observed
angles, the algorithm rejects the pose and waits for new data.

These constraints improve APE’s stability but they also
lead to ignoring poses (loss of tracking) on the edges of the
workspace, where most of the photodiodes are occluded from
the lighthouse.

All the poses are estimated by the algorithm in the vive
frame instead of the world frame. The vive frame is an
auxiliary frame between the lighthouses’ frames and the
world frame. The poses in the world frame are computed
through ROS because the world frame is determined prior to
the pose estimation, as is mentioned in subsection V-B.

B. Calibration Procedure

When the Vive system is installed, the lighthouses are
individually mounted wherever it is convenient for the user,
so the registration from lighthouse to lighthouse and from
lighthouse to the world frame of interest is initially unknown.
Therefore we created a procedure that addresses this issue.

Our calibration procedure consists of a concatenation of
rigid-body transforms (4) that leads to the relative poses of
the lighthouses. It assumes that the trackers are static leading
to a more accurate process.

wTl =w Tb
bTt

tTl (4)

For Astrobee tracking, as in many robotic applications,
we have multiple trackers rigidly mounted to the robot
chassis, pointing in different directions, to provide improved
tracking coverage. We use the combined tracker information
to estimate the position of the robot’s body frame (b). The
user should specify the mounting geometry of the trackers
on the robot as body-to tracker relative poses bTt. The user
also registers the world frame by taking Vive measurements
with the robot body frame fixed at a known pose wTb.

In the time interval between the start and end of the data
acquisition, our calibrator records light data at 30 or 60 Hz
(depending on the lighthouse’s mode). After completing the
data acquisition, it starts by computing an initial estimate

of the relative pose between the trackers and the lighthouse,
using the following cost function:

f̂Cal =

N∑
p=1

[
hp
(
lTt
)
− αp

]2
(5)

where hp is function (2) using as its input:

lP̃p = lTt
tP̃p (6)

This estimate is used to initialize the final cost function,
where we compute, simultaneously, the pose of each light-
house in the vive frame, but this time with all the trackers
at the same time, as in:

fCal =

K∑
t=1

M∑
l=1

N∑
p=1

[hp,l,t (wTl) − αp]
2 (7)

where the function hp,l,t is similar to (2), however the input
is wTl which can be obtained from the rigid-body transform
lTw. To obtain the input of the original function, we resort
to the following expression:

lP̃p = lTw
wTt

tP̃p (8)

After having all the lighthouses’ poses computed, the
procedure chooses the vive frame as one of the lighthouses’
frames and converts the lighthouses’ poses to this new
auxiliary frame. We decided to use this frame in order to
preserve the frame hierarchy in the original ROS driver.

VI. RESULTS

In order to evaluate Vive’s performance, we designed
two experiments where we assess the system in different
situations. Since we do not have access to Vive’s baseline
algorithm’s (from now on referenced as baseline) input data,
in order to compare it with our proposed algorithm (from
now on referenced as proposed), we will have to use different
datasets collected in similar conditions. We used however,
different lighthouse configurations for each dataset. We used
two set-ups (shown in Fig. 5): for the baseline algorithms,
we used the adjacent walls configuration, which provided a
position standard deviation of 5 mm against 93 mm and a
maximum deviation of 28 mm against 6271 mm of the other
configuration; the proposed algorithm performed well for
the first lighthouse set-up (lighthouses on opposing walls),
eliminating the need to reconfigure their locations.

Fig. 5. Configuration of the lighthouses in the granite surface’s workspace.



A. Static State Results

We started with a stationary state comparison between
algorithms, as described in section IV, where we evaluate
the estimated pose’s standard deviation (maximum standard
deviation of the 3D position and standard deviation of
the angle resorting to an axis-angle representation of the
orientation). In this experiment, the tracker was static and
at a distance of 1-2 m from the lighthouses. Table I contains
the results we obtained for each of the approximately 30 s
dataset.

TABLE I
STANDARD DEVIATION OF THE POSE IN A STATIC STATE.

Algorithm Dataset σPosition [mm] σOrientation [◦]

Baseline

s1 0.417 0.00300
s2 0.151 0.00586
s3 0.260 0.000476
s4 0.214 0.0023
s5 0.168 0.00687

Proposed

s6 4.960 0.010
s7 0.0875 0.000216
s8 1.149 0.000476
s9 10.052 0.0447
s10 0.851 0.0030

Comparing the average position’s standard deviation from
Vive’s built-in algorithms (0.242 mm) and from our algo-
rithms (3.419 mm) we can clearly conclude that the former
outperforms the latter in a stationary experiment. These
results are explained by the fact that our algorithm does not
use the correlation between consecutive poses. The inertial
measurements also help the baseline algorithm with this
correlation. However, this is only valid for a static situation,
and the trackers will not be in a constant pose while tracking
the robot.

B. Dynamic State Results

The second experiment consists of tracking with the same
algorithms but with the trackers in motion, as described in
section IV. As Astrobee floats in a perfectly flat surface, it’s
trajectory should be a perfect plane.

Fig. 6. XY view of the path generated with tracker 3 from dataset d5.

In this set of experiments (Table II), we assess the distance
between the trajectory generated by each tracker and a plane

fit to the estimated poses and also the angle between the
plane’s normal vector and the same vector attached to the
tracker’s frame in the first instant. We will compare the
precision (through the standard deviation) of both algorithms
again but for this different situation and now we’ll also in-
clude an accuracy assessment (through the plane’s maximum
deviation — εmax — and average deviation — d̄). For these
tests, trackers 1 and 2 were mounted on the sides of Astrobee,
except for dataset d4, where they were attached to the top
of the robot, as was tracker 3 when it was used. We include
in the results table a reference to the location of the trackers
on the robot for each dataset (s for starboard, p for port and
t for top). All the datasets have a duration of 40-120 s and
Astrobee performed a trajectory similar to the one in Fig. 6,
manually controlled, with an average linear velocity of 1-6
cm/s.

TABLE II
DEVIATION FROM THE FITTED PLANE.

Algorithm Dataset Tracker σ [mm] εmax [mm] d̄ [mm]

Bsl.

d1 1 (s) 1.08 2.36 0.90
d1 2 (p) 1.51 6.77 2.02
d1 3 (t) 0.74 2.96 0.93
d2 1 (s) 33.44 802.57 43.25
d2 2 (p) 7.73 74.51 8.63
d3 1 (s) 0.76 3.32 1.12
d3 2 (p) 2.24 28.79 3.39
d4 1 (t) 71.721 270.628 150.371
d4 2 (t) 26.629 106.627 48.589

Prop.

d5 3 (t) 1.14 5.05 0.90
d6 3 (t) 0.39 5.21 0.39
d7 1 (s) 2.11 22.80 2.94
d7 2 (p) 1.09 12.40 1.07

Algorithm Dataset Tracker σ [◦] εmax [◦] d̄ [◦]

Baseline

d1 1 (s) 0.02 0.50 0.01
d1 2 (p) 0.02 0.47 0.02
d1 3 (t) 0.01 0.26 0.01
d2 1 (s) 0.80 58.31 0.11
d2 2 (p) 0.11 4.7 0.08
d3 1 (s) 0.01 0.26 0.01
d3 2 (p) 0.09 4.24 0.02
d4 1 (t) 0.04 0.64 0.01
d4 2 (t) 0.04 0.69 0.01

Proposed

d5 3 (t) 0.11 2.14 0.06
d6 3 (t) 0.36 4.98 0.17
d7 1 (s) 1.05 11.63 0.32
d7 2 (p) 0.29 4.89 0.13

The obtained plane distances show that the baseline al-
gorithm can be unstable when compared to our algorithm.
For the position’s worst case scenario, the baseline is outper-
formed by the proposed algorithm in precision by a factor
of 15 while for accuracy by a factor of at least 36 (and up to
50). Both algorithms however have similar results for the best
case. For the orientation evaluation, the baseline algorithms
outperform the proposed ones due to using the gravitational
acceleration. The tests we present only address two degrees
of freedom. Nevertheless, the orthogonality between the
lighthouse’s fields of view leads to similar results for the
other degrees.

The inertial measurements make the baseline algorithm be-
have differently from the proposed one. This can be observed
in Figs. 7 and 8, with the evolution of the plane’s distance



for every sample with both algorithms. Although dataset d5
is longer, d3 has more samples due to incorporating IMU
measurements.

Fig. 7. Height of tracker 2 in the path generated with the baseline algorithm,
for dataset d3.

Analyzing the distance to the best-fit plane, represented
in Fig. 8, we can see that although it is smooth throughout
most of the samples, it has some spikes. We suspect that
these spikes might be related to rogue reflections perturbing
the data or to a sudden loss of measurements.

Fig. 8. Height of tracker 3 in the path generated with the proposed
algorithm, for dataset d5.

Examining figure (Fig. 8) we notice some noise that
resembles a step, which can be explained by the movement of
the tracker changing the photodiodes that detect the infrared
laser. We also suspect that the predominating offset in the
same figure is related to not including the error parameters
broadcasted by the lighthouses mentioned in section III. The
inclusion of these parameters will be part of our future work.

VII. OUTDOOR EXPERIMENTS

We also tried our algorithms and platform in an outdoor
environment. This test was similar to the one in VI-A, but
this time the lighthouses were further from each other (the
distance was around 5 m). The sun’s radiation interfered
severely in the synchronization between lighthouses, but this
was easily solved with a synchronization cable. Nevertheless,
for two trackers, the worst standard deviation for the position
was 13.5 mm and for the orientation was 0.0193◦. These
results show that both the system and the algorithms have
potential for outdoor environments.

VIII. CONCLUSIONS

HTC Vive is an affordable solution for localization prob-
lems, in indoors and outdoors environments with great accu-
racy. We demonstrated that it has sub-millimetric precision

when the tracker is static. We also provide evidence from
tests performed in a controlled environment that the accu-
racy of Vive with the trackers in motion can range from
millimetric up to metric.

We have also contributed a tracking algorithm, a calibra-
tion procedure and accompanying open-source software4 that
besides providing a completely transparent experience for the
user, also grants accuracy as a means of obtaining ground
truth localization data.

We intend to make our algorithms even easier to use and
we also plan to experiment with other pose estimators [12]
that use the IMU data and include the lighthouses’ error
parameters in the pose estimator.

ACKNOWLEDGEMENT

We would like to thank the Astrobee engineering team
and the NASA Human Exploration Telerobotics 2 project
for supporting this work. The NASA Game Changing
Development Program (Space Technology Mission Direc-
torate), ISS SPHERES Facility (Human Exploration and
Operations Mission Directorate) and Fundação da Ciência
e Tecnologia (project [UID/EEA/50009/2013] and grant
[SFRH/BI/135041/2017]) supported this work.

REFERENCES

[1] D. Niehorster, L. Li, and M. Lappe, “The Accuracy and Precision of
Position and Orientation Tracking in the HTC Vive Virtual Reality
System for Scientific Research,” i-Perception, vol. 8, no. 3, 2017.

[2] F. King, J. Jayender, S. Bhagavatula, P. Shyn, S. Pieper, T. Kapur,
A. Lasso, and G. Fichtinger, “An Immersive Virtual Reality Environ-
ment for Diagnostic Imaging,” Journal of Medical Robotics Research,
vol. 01, no. 01, p. 1640003, 2016.

[3] P. Kulakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwin,
“Angle-of-arrival localization based on antenna arrays for wireless
sensor networks,” Computers & Electrical Engineering, vol. 36, no. 6,
pp. 1181–1186, 2010.

[4] M. Bualat, J. Barlow, T. Fong, C. Provencher, and T. Smith, “Astrobee:
Developing a Free-flying Robot for the International Space Station,”
in AIAA SPACE Conference and Exposition, 2015, p. 4643.

[5] B. Coltin, J. Fusco, Z. Moratto, O. Alexandrov, and R. Nakamura,
“Localization from Visual Landmarks on a Free-flying Robot,” in
IEEE/RSJ IROS, 2016, pp. 4377–4382.

[6] M. Windolf, N. Götzen, and M. Morlock, “Systematic accuracy and
precision analysis of the video motion capturing systems — Exempli-
fied on the Vicon-460 system,” Journal of biomechanics, no. 12, pp.
2776–2780, 2008.

[7] S. Soylu, A. Proctor, R. Podhorodeski, C. Bradley, and B. Buckham,
“Precise trajectory control for an inspection class ROV,” Ocean
Engineering, vol. 111, pp. 508–523, 2016.

[8] P. R. Desai, P. N. Desai, K. D. Ajmera, and K. Mehta, “A Review
Paper on Oculus Rift - A Virtual Reality Headset,” IJEET, vol. 13,
no. 4, 2014.

[9] P. Rong and M. L. Sichitiu, “Angle of Arrival Localization for Wireless
Sensor Networks,” in 3rd Annual IEEE SECON, vol. 1, 2006, pp. 374–
382.

[10] J. Craig, Introduction to Robotics: Mechanics and Control. Pearson,
2005, vol. 3.

[11] D. Miller, A. Saenz-Otero, J. Wertz, A. Chen, G. Berkowski,
C. Brodel, S. Carlson, D. Carpenter, S. Chen, S. Cheng et al., “Spheres:
A Testbed For Long Duration Satellite Formation Flying In Micro-
Gravity Conditions,” in AAS/AIAA Space Flight Mechanics Meeting,
2000, pp. 167–179.

[12] D. Schinstock, “Gps-aided INS Solution for OpenPilot,” Kansas State
University, Tech. Rep., 2014.

4Our algorithms and platform are available open-source at
https://github.com/nasa/astrobee together with
Astrobee’s source code


