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ABSTRACT

Astrobee is a freeflyer robot that will soon board the In-
ternational Space Station (ISS). It senses with two pairs
of color and Time-of-Flight (ToF) depth cameras, whose
calibration is critical for mapping, localization, obstacle
detection, and more. Even with an initial on the ground
calibration, on-orbit recalibration may be required due to
hardware changes from shipping, launch, environmental
changes, and for future hardware replacements. The as-
tronauts time is limited and expensive, therefore, calibra-
tion should not only be accurate and robust but also run
in space with minimal human intervention. Hence, we
present an automatic intrinsics and extrinsics calibration
for the depth and visual cameras of Astrobee. We thor-
oughly evaluate our procedure and demonstrate it is ready
for use on the ISS.

1. INTRODUCTION

Depth and visual multi-camera systems have increased
in popularity over the last few decades. Manipulation
tasks [1, 2], mapping [3], navigation and path planning [4]
are some of the tasks that can benefit from a multi-camera
system. Monocular systems can address a wide variety
of tasks such as recogntion, while depth cameras can pro-
vide real-time absolute metric information; however, their
resolution is insufficient to detect fine details of the scene.
Hence, combining both cameras is useful for many robotic
applications. Alternatively, stereo visual cameras can also
provide metric information, but introduces some ambigu-
ity to the measurements due to challenges in resolving the
depth of low-texture scenes. Integration and data fusion of
visual and depth cameras inherently requires an accurate
intrinsics and extrinsics calibration, which presents some
challenges.

Although camera calibration has been a widely explored
problem, the fusion of depth and color cameras is still an
ongoing research topic. Most traditional methods are not
well suited to deal with different types of sensors nor can
they cope with the lower resolution of the ToF cameras.
Different approaches have been proposed in the past, but
most require extensive manual intervention (e.g., complex

setups [5] or manual selection of features in the depth
image [6]) and assume the relative pose between cam-
eras (the extrinsics calibration) is easily solved by stan-
dard procedures. However, due to the two cameras con-
siderably different fields of view (FOV), challenges arise
in acquiring suitable calibration data, leading to unstable
parameter estimates and undesirable highly correlated in-
trinsic and extrinsic camera parameters [7].

To overcome these issues, we extend Kalibr, an open
source calibration tool, to support less constrained calibra-
tion targets like the one available to Astrobee on the ISS.
This is especially important considering the FOV issues,
but also given ISS storage space limitations. Astrobee has
a docking station for autonomous battery recharging that
was specifically designed to have fiducial markers fully
visible at all ranges as Astrobee docks and undocks. By
re-using it as a calibration target, no extra physical items
need to be sent to space. We apply a standard camera cal-
ibration procedure [8] by taking advantage of the ampli-
tude images of a ToF camera and test their ability to pro-
vide accurate intrinsics and extrinsics calibration between
color and ToF cameras. Furthermore, the vision system
is integrated into the robot by calibrating the extrinsics of
the cameras relative to the robots IMU. Contrary to other
state of art methods, our approach has a good level of au-
tonomy and is compatible with ROS.

2. CONTEXT AND MOTIVATION

Astrobee is a freeflyer robot developed by the NASA
Amess Intelligent Robotics Group (IRG) that will replace
the previous generation of freeflyer robots SPHERES
in the International Space Station (ISS). This compact
robot’s main goals are to help scientists and researchers
run a variety of experiments in zero-gravity, as well as
freeing up astronauts’ time spent on tedious housekeep-
ing jobs. It is also intended to serve as additional eyes
for flight controllers. To complete all these tasks au-
tonomously, Astrobee relies on its vision system which
has, among others, two pairs of depth Time-of-Flight and
color cameras (Fig. 1). The NavCam and DockCam are
monocular RGB cameras with 1280x960 resolution (1.2
megapixel) and fields of view (FOV) of respectively 120◦

and 90◦. The forward-facing NavCam is used for map-



Figure 1. : Astrobee Camera Pairs

ping and navigation whereas the rear-facing DockCam
helps to improve pose estimation while docking by detect-
ing fiducials on Astrobee’s dock. As for the depth cam-
eras, both are CamBoard Pico Flexx time-of-flight flash
LIDAR depth sensors with lower FOV (62◦) and reso-
lution (224x172), and an effective range of 0.1-4 m at 5
frames per second (fps) (Maximum acquisition is 45 fps
but the range is reduced to 1m). The rear-facing Perch-
Cam detects and shapes ISS handrails essentially for the
perching procedure and the front-facing HazCam detects
obstacles working alongside the NavCam for navigating.
Calibrating and integrating all of the cameras is critical to
the system functioning correctly and comes as our primary
motivation for this work.

The scripts developed as well as all Astrobees flight soft-
ware are available open source and can be found at [9].

3. RELATED WORK

Most of the previous works handle ToF camera calibration
individually, focusing on the depth measurements correc-
tion. By having calibration data with different integration
times and targets with different reflectivities, Kahlmann
accounts for distinct sources of errors [10]. Deviations are
modeled by comparing the measurements with an external
highly accurate ground-truth track and building a look-up
table (LUT). Furthermore, the use of a calibration target
composed of LEDs is proposed to facilitate its detection
in the intensity images. A similar approach is presented in
[11] but depth deviations are corrected by linear interpo-
lation of a B-Spline instead. They also proposed the use
of an RGB camera with a fixed known relative position
to measure the depth ground-truth. Regarding the actual
intrinsics and extrinsics parameters estimation, a standard
camera calibration method proposed by [8] is generally
employed. It consists of moving a planar checkerboard
target with different views and orientations in front of the
camera/s. After that, homography geometry and point cor-
respondences are used to estimate the desired parameters.
Zhang and Zhang [6] simultaneously calibrate a color and
a depth camera pair by identifying the checkerboard cor-
ners of the calibration target in the color camera images
and exploring the planarity of the target in the depth im-
age. In [12], Herrera enhances Zhang’s work by also ac-

counting for depth distortion calibration. Although func-
tional, these works require manual selection of checker-
board corners for initialization of the depth camera pa-
rameters, lacking some automatism.

Contrary to the depth image, an amplitude image provides
a greyscale visualization of the target, partially resolving
the corner identification problem. The idea of using it for
calibration purposes has been proposed several times in
the literature. Fuchs solves both intrinsics, extrinsics and
depth calibration with amplitude images but uses a robotic
arm to provide accurate groundtruth [13]. Fusion of ToF
cameras with high-resolution cameras is also commonly
applied to improve the depth camera calibration, remov-
ing the need for complex setups [14, 15, 11]. Addition-
ally, in order to have a good calibration, one should try to
cover as many pixel locations as possible by the target but
at the same time have an overlapping FOV for both cam-
eras to retrieve the extrinsics. Specifically in the case of
a common checkerboard, having to be completely shown
in a frame to be recognized, appears as a constraint to the
recording of a good calibration dataset. Lindner solves
this by having a combined rig of other CCD-cameras [7],
which may not always come in hand.

Despite presenting major contributions to the area, all the
mentioned works use the HD color camera as an auxiliary
way of providing a ground truth to improve the ToF cal-
ibration, focusing more on the different depth error cor-
rections. They assume that provided with the visual im-
ages, the calibration between them is accurately solved by
a standard procedure. However, as noted by Lindner in
[7], calibrating the Tof camera alone or even in a pair with
just one color camera can lead to unstable pose estimates.
The internal and external camera parameters revealed to
have higher correlations for the latter cases mainly due to
the different field of views.

4. TOF DEPTH CAMERAS

Time-Of-Flight depth cameras have been taking the place
of more tradition depth sensors such as 2D range sensors
or sonars. In particular, the ability to provide real-time 3D
visual information, unlike other higher cost and slower
processing sensors, presents a great advantage in many
applications. Nevertheless, their range measurements are
usually less accurate and the lower resolution of their am-
plitude images can be a considerable constraint. They
make observations by illuminating the scene with an In-
frared (IR) light signal and calculating the time between
its emission and the reception of its reflection. There
are two common variations: either directly measuring a
pulsed light time of flight on each pixel or modulating
continuously light waves through an RF carrier and cal-
culating its phase shift upon reception. More specifi-
cally, Astrobee’s ToF cameras are Photonic Mixer Devices
(PMD) which implement the latter case.

A ToF camera usually provides a 3D point cloud along
with a depth image and an amplitude image (Fig. 2) The



(a) Visual Camera Image (b) Amplitude Image (c) Distance Image (d) Point Cloud

Figure 2. : Different data provided from a camera pair composed of visual camera (a) and a TOF depth camera (b), (c),
(d)

range image represents the measured distance from each
pixel to its corresponding projected point in the scene,
whereas the amplitude image is a quantification of the re-
flected signal strength. Some cameras, such as Astrobee’s,
may also deliver an intensity image which represents the
mean of total light captured by the sensor, including the
background light and the reflected IR signal.

5. CAMERA MODELS

Camera calibration is essentially the process of estimating
the parameters that can transform a real 3D scene into its
corresponding 2D camera image. To estimate these pa-
rameters we use the most common Pinhole Model to rep-
resent the given projection as depicted in Equation 1 and
illustrated in Fig. 3.

Figure 3. : Projection Pinhole Model

The parameters include the focal Length f and optical
center (u0, v0), each describing a geometric propriety in-
trinsic to the camera, the reason for which the estimation
of these parameters is called Intrinsics Calibration. The
focal length f represents the distance from the ”pinhole”,
i.e the distance from the center of the camera and the im-
age plane. It is divided in fx and fy which ideally have the

same value although they may slightly differ in practice.
The optical center, on the other hand, is the projection of
the camera center (the pinhole) on the image plane. Both
are included in K, the camera matrix (Equation 2), which
is used to project camera reference points into their cor-
respondent pixel coordinates in the camera image plane.
This transformation is invariant to camera dimensions as
only the relative relation between camera coordinates and
image coordinates are of interest, not the camera’s abso-
lute dimensions. For this reason, both focal length and
optical center are represented in pixels. An axis skew co-
efficient is sometimes also added to the intrinsics param-
eters but for a true pinhole model, we can consider it as
zero.

Furthermore, we still need to relate the camera’s location
and direction to the world (in this case we consider the
world as being the robot,i.e. the IMU frame of reference),
the extrinsics, so a coordinates transformation given by
rotation R and translation t is defined.

pundistorted = K [cwR
c
wt]

[
Pw

1

]
(1)

K =

[
fx 0 u0
0 fy v0
0 0 1

]
(2)

5.1. Distortion

The ideal pinhole model does not account for lens distor-
tion, which is not representative of real cameras. Thus, the
camera model to be calibrated needs to include distortion
coefficients as well.

Different distortion models can be defined depending on
the type of lens. The most common and the one used
for our ToF depth cameras, is the Radial-Tangential (Eq.
3) proposed by Brown [16], where (xu,yu) and (xd,yd)
are the undistorted and dilstorted points respectively. The
model describes radial distortion- an approximately radi-
ally symmetric effect caused by different light rays behav-
iors as incident points get away from the optical center-
and tangential distortion, caused by the nonparallelism be-
tween the lens and the image plane. The degree of the
radial and tangential distortion polynomial is set accord-
ingly to the estimated level of distortion, but usually, a



second-order polynomial with two tangential coefficients
(t1, t2) and two radial coefficients (k1,k2) is sufficient.

xu = xd + x̃(k1r
2 + k2r

4 + k3r
6 + ...)︸ ︷︷ ︸

Radial Distortion

+

t1(r
2 + 2x̃2) + 2t2x̃ỹ(1 + t3r2 + ...)︸ ︷︷ ︸

Tangential Distortion

yu = yd + ỹ(k1r
2 + k2r

4 + k3r
6 + ...) +

t2(r
2 + 2ỹ2) + 2t1x̃ỹ(1 + t3r2 + ...)

(3)

x̃ = xd − u0 ỹ = yd − v0 (4)

r =
√
x̃2 + ỹ2 (5)

For the visual cameras, a different distortion model, the
Field-Of-View (FOV) model (Eq. 6) proposed by Dever-
nay and Faugeras [17] was chosen. The FOV model is
more appropriate for wide-lens cameras and their nonlin-
ear distortion. It only includes one parameter, the FOV
angle ω of the ideal fish-eye lens, which in practice may
not be the exact camera’s FOV.

xu = xd
tan(rdω)

2 tan(ω2 )

1

rd
yu = yd

tan(rdω)

2 tan(ω2 )

1

rd
(6)

rd =
√
x2d + y2d (7)

6. PROCEDURE

As previously stated, several methods use the depth image
(Fig. 4a) to calibrate the depth cameras. However, despite
providing extremely useful information on the relative dis-
tance of scene objects, they are usually very noisy. Hence,
unless used along with specifically designed calibration
targets with, for instance, features at different depths, it
can be challenging to find sufficient correspondences be-
tween images to accurately calibrate a depth camera. Fur-
thermore, for the extrinsics calibration between two cam-
eras in a pair (visual and depth camera), this correspon-
dence is even harder given the cameras distinct image
characteristics. To overcome this, the amplitude image
of the ToF camera (Fig. 4b) is used where features of a
normal planar calibration target can be distinguished and
therefore we can treat the depth camera as a normal visual
one (or as a ”bad quality visual camera”).

The calibration procedure is based on the one proposed
by Zhang [8] and consists of inferring the intrinsics and
extrinsics from different perspectives of a planar calibra-
tion target whose 3D geometry and specifications are well
known. Ideally, the process would go through a single
round of data acquisition followed by the calibration com-
putation and optimization, however, an accurate and ro-
bust process of camera calibration and its integration with

(a) Depth image (b) Amplitude Image

Figure 4. : Comparison between ToF camera Amplitude
and Depth Images

the IMU, requires in fact, very distinctive datasets. For
intrinsics and extrinsics estimation between cameras, im-
ages should be recorded with slow movements in order to
reduce motion blur. This comes with an increased impor-
tance due to the lower resolution of the depth cameras for
which the effects of motion blur can lead to worse markers
recognition and even calibration divergence. On the other
hand, correlation of camera images with IMU movements
can only be correctly achieved with the excitement of all
IMU axis and with meaningful velocity and acceleration
information, therefore faster and shakier movements are
necessary. As it is evidenced in images of Fig. 5, taken
while rapidly moving the robot, motion blur effects are
substantially worse for the depth camera. Because of that,
in this case, we only considered the higher resolution cam-
era for the IMU-Cameras extrinsics calibration. The rela-
tive pose between the depth cameras and the IMU can be
inferred from the previous camera-camera extrinsics esti-
mation.

Overall, our approach divides the procedure into two main
steps summarized in Table 1.

(a) Nav Cam (b) Haz Cam

Figure 5. : Camera Images Comparison for IMU calibra-
tion dataset at the same timestamp. Motion Blur effect
is definitely clearer on the depth camera amplitude image
hampering an accurate target detection

Finally, it should also be noted that the calibration accu-
racy/efficiency trade-off is highly related to the number of
dataset images and different target perspectives captured.
Despite the importance of this fact, we were more inter-
ested in having a very accurate calibration rather than an
extremely fast one, so minimizing the number of images
used and consequently the runtime was not a main point
of focus.



Table 1. : Calibration procedures description

Procedure Objective Recorded Data Description

1
Calibrate Intrinsics and Extrinsics

Camera pairs
Visual camera grayscale images
Depth camera amplitude images

Slow movements
(reduce motion blur)

2
Calibrate Extrinsics

Cameras - IMU

Visual camera grayscale images
Depth camera amplitude images

IMU data

Fast and shaking movements
(excite all IMU axis)

6.1. The Target

Regarding the calibration target, Astrobee’s dock already
has fiducials markers in a specific design pattern to enable
autonomously docking/undocking operations. By reusing
it as a calibration target, we not only avoid shipment of
extra equipment to the current overcrowded ISS but also
make use of the already high reflectance dock’s material.
This is particularly important to easily detect the markers
by differences between black and white in the amplitude
image. Contrary to checkerboards or circle grids, fiducial
based targets can automatically detect orientation given
its self-identifying binary codes. Most standardized meth-
ods and software tools only support checkerboard detec-
tion which imply that the whole target needs to be within
the camera image for determining its orientation. Consid-
ering the quite distinct cameras FoV and resolutions, it can
be extremely difficult to have in both cameras a clear view
of the whole target at the same time, therefore the use of
these markers (also known as AR markers) is definitely a
big advantage in our case.

6.2. Software and Main Algorithms

For the actual estimation problem, Kalibr [18], an open-
source software tool, was chosen due to its several differ-
ent features:

• Flexibility: supports 3 types of targets, 3 types of
distortion models and 2 types of projection models

• Robust feature extraction and optimization algo-
rithms

• Outputs extrinsics related to IMU measurements
(which most calibration toolboxes don’t)

• Provides error metrics and respective data visualiza-
tion

• ROS friendly and automatic

Following the data acquisition previously depicted, the
ROS Bags and configuration files (with cameras and IMU
characteristics and target description) were inputted into
the software. Its calibration can be briefly summarized by
algorithms 1 and 2.

Algorithm 1 Camera Pair Intrinsics and Extrinsics Cali-
bration Algorithm

For each camera in a camera pair
1: Images pre-processing (gaussian filtering applied for

smoother image analysis)
2: Detect markers in a image set and compare with ex-

pected target.
3: Remove images without successful detections
4: Initialize camera parameters and solve bundle adjust-

ment for each camera individually
After each camera initialized:

5: Build correspondence graph between cameras obser-
vations based on simple timestamps approximation

6: Initialize extrinsics parameters
7: Solve bundle adjustment for intrinsics and extrinsics
8: Delete outliers

For IMU calibration, only the visual camera was consid-
ered given its better resolution and consequently better
resistance to motion blur. The transformations from the
IMU reference to the depth cameras’ were inferred from
the previously determined camera pair extrinsics.

Algorithm 2 Camera-IMU Extrinsics Calibration Algo-
rithm

For each camera in a camera pair
1: Lines 1 - 3 from Algorithm 1
2: Splines computation for IMU data points interpola-

tion. This was made considering previous information
on IMU characteristics and has the possibility of in-
putting a gravity estimation, which is useful for space
applications.

3: Time calibration between camera and IMU.
4: Initialize extrinsics parameters
5: Solve bundle adjustment for extrinsics. If desired, re-

computation of intrinsics and extrinsics between cam-
eras is also possible.

6: Delete outliers

The bundle adjustments were achieved through a
Levenberg-Marquardt trust region optimizer solved by a
Sparse Cholesky Linear Solver. For more details, we refer
to [18].

Finally, it is important to note that, despite being a very ro-
bust calibration tool, Kalibr is not built to deal with lower
resolution cameras neither it supports a more freely dis-
posed target as ours. Thus, part of the work was concen-



trated on increasing the flexibility of the software.

As matter of fact, the algorithm does by default a sub-pixel
refinement in which it compares its own fiducial detection
with an OpenCV one. If the difference between the two
is greater than a specific threshold, the observation is con-
sidered as faulty. However, for a lower resolution camera
as the ToF one, this presents a big problem: a lot of ob-
servations were being removed and the calibration wasn’t
converging due to lack of correspondences.

Furthermore, for a robust initialization of parameters, only
the frames where the target board view was complete were
being used. Again, in depth cameras’ images, the detec-
tion of all the markers at the same time was never possible
mostly because of its lower resolution and field of view.
The smaller markers could only be detected if they were
close to the camera and therefore the whole target would
not fit in the image. Hence, not only the sub-pixel refine-
ment feature was removed but parameter initialization was
also relaxed.

As far as the target is concern, Kalibr only supports
AR markers symmetrically organized in grids. However,
that’s not the case of our dock target so support for a more
flexible target was added in order to have a successful cal-
ibration (most of the changes were on lines 1 - 4 of 1).

7. EXPERIMENTAL TESTS AND
RESULTS

The final procedure was implemented and further authen-
ticated through different tests in a frictionless surface lab
(to replicate space dynamics) as well as inputted in As-
trobee’s mapping and navigation procedures to verify its
reliability.

The data acquisition for procedure 1 (explained in Table
1) was done by moving the target in front of the cam-
eras with different poses and different distances trying to
cover all pixels of both cameras images and at the same
time having overlapping FOV’s so we can have a good
amount of correspondences. The RGB cameras’ images
were recorded in grayscale mode with at 15Hz while the
depth camera data was acquired at 5Hz (maximum acqui-
sition frequency for best performance).

On the other hand, for procedure 2, since all IMU axis
need to be well excited for movement detection, the tar-
get was now static and the robot detached from its base.
Although we can program the robot to move and record
the data autonomously, given the required rapid and shaky
movements, we moved the robot by hand for a safer pro-
cedure. IMU data was recorded at 250Hz whereas visual
cameras and depth cameras had a frame rate of 15Hz and
5Hz respectively. As previously explained in section 6,
despite still recorded (for possible recalibration or veri-
fication), depth cameras images were not considered for
calibrating the extrinsics to the IMU due to its lower reso-
lution and acquisition frame rate.

Table 2. : Camera pairs calibration Reprojection Errors

Reprojection Error [pixel]
Camera µ σ

Nav Cam 0 0.431
Haz Cam 0 0.639

Dock Cam 0 0.320
Perch Cam 0 0.548

(a) Nav Cam Distorted (b) Nav Cam Undistorted

(c) Haz Cam Distorted (d) Haz Cam Undistorted

Figure 6. : Camera images before and after undistortion
given by camera pair calibration. Target lines on origi-
nal images (6a, 6c) were corrected to straight lines after
undistortion (6b , 6d)

The resulting projection errors and respective standard de-
viation were quite satisfactory as demonstrated by Table 2.
The results showed no systematic error (the mean is ap-
proximately 0), with its maximum value being no greater
than 1.5 pixels (Fig. 7). Moreover, one can see that gen-
erally, markers were detected on almost the entire depth
cameras’ FOV while for the RGB cameras there is a lack
of observations on the corners mainly due to its fish-eye
type lens. Theoretically, this can have implications on ac-
curate treatment of points in those areas but it shouldn’t
be a major problem in practice.

In addition to this, visual inspection also served as quality
analysis for the first part of the procedure. Rectified im-
ages were computed for verification of the extrinsics be-
tween cameras (Fig. 9). Distorted and undistorted image
comparison measured the quality of distortion coefficients
estimation (Fig. 6).

Relatively to the cameras-IMU calibration, as expected
due to the less stable dataset, reprojection errors mean and
standard deviation increased significantly but still repre-
senting very decent metrics (Table 3). Although most of
the computed errors remained low, some higher values,
up to approximately 12 pixels, were observed as demon-
strated by Fig. 8. In this case, it appears that the result may
considerably depend on the quality of the data acquired.
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(b) Haz Cam (c) Dock Cam
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(d) Perch Cam

Figure 7. : Reprojection error distribution of camera pairs calibration. The square on the left in each image represents the
cameras FOV with all the pixels with successful markers detection. The grid on the right displays the error distribution in
pixels. The color bar exposes the errors timing information, with dark blue being the first images on the dataset and dark
red the last ones
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(b) Haz Cam (c) Dock Cam
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(d) Perch Cam

Figure 8. : IMU extrinsics calibration reprojection error distribution.

For instance, the Nav-Haz camera pair performed slightly
worse, especially at around the middle of the dataset (im-
ages indexes 200-250 represented as light green dots). As
the camera-IMU calibration uses the previous intrinsics
and extrinsics results, this possible has to do with the fact
that those frames had markers observation on the image
corners pixels, which might not have been observed in the
intrinsics calibration.

Moreover, by inspecting the ToF cameras point clouds and
resulting frame of references in Fig. 11 and 10 one can
confirm the plausibility of that the results.

Besides the camera intrinsics and extrinsics, ToF cameras
usually present systematic and non-systematic errors re-
garding its depth values which have been subject of sev-
eral studies in the past years. However, in most of the
cases, the resulting depth clouds and depth images after
camera firmware internal processing (it already does its
own depth correction) were quite satisfactory for our spe-
cific tasks so we leave a more extensive analysis on the
matter for future work.

8. CONCLUSION AND FUTURE WORK

With this work, an effective and accurate way of calibrat-
ing and integrating a vision system for space applications
was successfully developed. Contrary to other methods
for joint depth and visual cameras calibration, our ap-
proach is flexible enough to cope with different cameras

characteristics and to be integrated as a considerably au-
tomatic robotic procedure (although not fully automatic).
Through Astrobees teleoperation system, flight controllers
or other scientists can supervise the dataset recordings, re-
leasing astronauts from this task. Future work may re-
side in trying to make the procedure fully autonomous by
developing automatic data acquisition as a path planning
problem for recording the best views of the target for the
calibration. Furthermore, at this moment the two camera
pairs are being calibrated separately because they do not
share overlapping fields of view. In the future, we wish
to find a way of combining all the cameras and the IMU
in one single procedure. By spreading fiducials all over
Astrobee’s workplace and additionally providing depth in-
formation, one can compute robust pose estimations and
possibly get rid of the current target, creating one big bun-
dle adjustment.
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Figure 9. : Depth camera image recti-
fied into visual camera frame of reference.
Green lines show matching points on each
image.

Figure 10. : Depth Point Clouds af-
ter applying relative transformation
given by extrinsics. Clouds are cor-
rectly positioned accordingly to As-
trobee mesh and visual cameras im-
ages

Figure 11. : Resulting frame of refer-
ences after extrinsics calibration

Table 3. : Reprojection Errors and IMU related Errors of Cameras-IMU extrinsics calibration. The last column represents
the time calibration results between IMU and Cameras.

Reprojection
Error [pixel]

Gyroscope
Error [rad/s]

Accelerometer
Error [m/sˆ2]

Camera µ σ µ σ µ σ Timeshift to IMU [s]
Nav Cam 1.555 1.974 -0.069
Haz Cam 1.439 1.378 0.001 0.001 0.043 0.565 -0.077

Dock Cam 0.946 0.647 -0.070
Perch Cam 0.634 1.513 0.001 0.001 0.0170 0.0165 -0.081
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