SoundSee: Towards Autonomous Acoustic Monitoring of the ISS

Luca Bondi, Gabriel Chuang, Christopher Ick, Adarsh Dave, Charles Shelton, Brian Coltin, Trey Smith, Samarjit Das

Bosch SoundSee and NASA's Astrobee

The Astrobee robot has been developed by NASA Ames Research Center

SoundSee's Primary Mission Objectives

Acoustic mapping

Audio Al for machine health monitoring

SoundSee ISS Mission Operations and Research

SoundSee Sensor Capabilities

Operating modes and executing on-orbit recording experiments

SoundSee Sensor Capabilities

Basic mapping mechanisms

Experimental Setup Aboard the ISS

Collaboration between Bosch SoundSee and NASA-ARC ISAAC team

Astrobee + SoundSee transacts

Location of simulated sound sources @JEM

SoundSee Data Ops + Ground Experiments + Simulation Challenges of acoustic imaging from a flying robotic platform

- ► Asynchronous systems
 - ▶ video-cameras
 - ▶ robot telemetry
 - ► SoundSee recordings
 - sound sources
- Synchronization is vital for acoustic imaging

► First attempt to match simulation, lab measurements, ISS acquisitions

Localization error as a function of displacement between microphone array and source along y-axis

Ground experiment setup at Bosch

Time-varying delay between stimulus signal and microphone signal

SoundSee Data Ops + Ground Experiments + Simulation

Comparing ISS results with ground simulation

Moving Forward: Simulated Leak Audio Data Collection Towards autonomous leak detection and acoustic anomaly detection

- ► Two iPads play audio files to simulate noise and leak audio signals
- ► Record audio with SoundSee with Astrobee being moved manually by astronaut, and with Astrobee navigating autonomously (to measure the impact of observation platform noise)
- ► Data Analysis in progress

SoundSee Ultrasonic recording

0:30

Experiments with sampling frequencies 96 kHz and 196 kHz

1 minute recording, in front of AstroBee bay AstroBee fan activated at second 40, steady

from second 52 onward

Power Spectral Density

0.000

32768

16384 8192

SoundSee Ultrasonic recording

Comparisons between Bay and Rack, 192kHz, 40kHz – 60kHz

HF components that appear close to both bay and rack. EMC interference or real acoustic signal?

- HF components that appeared close to the rack, not present close to bay
- HF components present close to bay, not present close to rack

Fusing deep generative models with Phased-array processing Novel imaging, dynamics reconstruction exploiting scene map

► Synthetic Aperture Acoustic imaging with Compressive Sensing + deep generative model-based priors on acoustic scenes/source distribution

Thank you!

