
Science Autonomy in the Atacama

Trey Smith trey@ri.cmu.edu

Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Abstract

We have recently embarked on a three-year
project, funded by the NASA ASTEP1 pro-
gram, to develop robotic astrobiology in the
process of learning the limits of life in the
Atacama desert of Chile. We see this as an
opportunity to develop a more science-aware
rover: one that, on encountering a new area,
can select interesting features, perform ini-
tial experiments, and selectively return rele-
vant data, all before receiving feedback from
the science team. Several components of the
proposed science autonomy system can make
use of classifiers (is this the kind of rock we
are looking for?) and clustering algorithms
(is this rock like anything we have already
sampled?). The unknown character of unex-
plored areas motivates use of on-line learning
techniques.

1. Introduction

We have recently embarked on a three-year project,
funded by the NASA ASTEP program, to develop
robotic astrobiology in the process of learning the lim-
its of life in the Atacama desert of Chile. The project
completed its first expedition to the Atacama this
April. The primary goal of this preliminary visit was
to learn about the effects of the Atacama environment
by testing the Hyperion rover (Figure 1) and sensors
(Figure 2) prior to extensive integration in year two.
The expedition was highly successful, achieving all 12
of its experimental goals, including measurements of
wind, insolation, rover motion power requirements,
and instrument validation.

By the third year, the rover will perform science op-
erations under Mars-like communications restrictions.
It will integrate fluorescence-based sensors for detec-
tion of specific organic molecules, panoramic imagers,
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Figure 1. Hyperion in the Atacama.

microscopic imagers, spectrometers, as well as mecha-
nisms for shallow subsurface access.

The measurement and exploration technique produced
by this investigation combines long traverses, sampling
measurements on a regional scale and detailed mea-
surements of individual features, in pursuit of three
primary science objectives:

1. Seek Life: Seek and characterize biota surviving in
the Atacama and analyze microhabitats. We will
question the hypothesis that the most arid regions
of the Atacama represent an absolute desert.

2. Understand Habitat: Determine the physical and
environmental conditions associated with iden-
tified past and current habitats, including the
search for structural fossils, the monitoring of cur-
rent biological oases and microorganic communi-
ties, and learning how these organisms have con-
tributed to the modification of their environment.

3. Relevant Science: Develop, integrate, and field
test a suite of science instruments that form a
complete payload relevant to the NASA Mars Ex-
ploration Program.

We see this project as an opportunity to develop a
more science-aware rover: one that, on encountering a



Figure 2. (above) colored LEDs provide illumination for a
nighttime fluorescence imager test; (below) a backpackable
fluorescence microscope was used for ground truth

new area, can select interesting features, perform ini-
tial experiments, and selectively return relevant data,
all before receiving feedback from the science team.
This ability will dramatically increase the amount of
science return per communication cycle.

2. Related Work

This new science autonomy effort will build on ca-
pabilities developed for the Robotic Antarctic Mete-
orite Search with the Nomad robot (Wagner et al.,
2001). Nomad autonomously executed coverage pat-
terns, identified rocks on the ice, and classified them
as meteorites or terrestrial material.

The Multi-Rover Integrated Science Understanding
System (MISUS) project at JPL developed a multi-
rover system in simulation (Estlin et al., 1999). The
system’s top-level goal was to characterize the rock dis-

tribution in a region, and it was able to generate sub-
goals (new locations to study) based on the frequency
of each rock type in different areas. Rover sensors re-
turned an IR spectrum, a point in a 14-dimensional
feature space. The rock types that guided sub-goal
generation were identified by an online k-means like
clustering algorithm.

Our system will operate in a similar rover domain, and
also incorporates the concept of automatically generat-
ing science sub-goals during the mission. But because
we must satisfy the demands of the science team on
a real expedition, our system will need to accomodate
changing scientist preferences, and competing mission
objectives, such as requests for traverse towards dis-
tant sites identified from orbit.

The Autonomous Sciencecraft Experiment (ASE) will
demonstrate onboard autonomous science on the
Techsat-21 Air Force satellite constellation (Davies
et al., 2001). ASE has two main focuses. It will use
onboard data analysis to increase science return given
a fixed downlink budget, reporting summary statis-
tics rather than entire raw data sets. It will also per-
form detailed observations of interesting events (such
as erupting volcanoes) based on pre-defined trigger
conditions.

We believe that science autonomy aboard orbiters and
planetary rovers present somewhat different problems.
Orbiters typically have long mission lifetimes and re-
peatedly view the same science features. Science team
interaction is for the most part not time-critical, and it
can be relatively infrequent after an initial shake-down
period.

In contrast, planetary rovers have short mission life-
times and may only visit a particular site once. Be-
cause sites vary widely and in unpredictable ways, it
is difficult to envision giving the rover detailed science
goals and then allowing it to proceed on its own. A
more likely scenario involves daily updates to the goals
as the science team’s initial ideas about an area are
refined by rover data. These updates are time-critical
since they are relevant to a particular area that may
not be visited again. Thus interacting with the sci-
ence autonomy system will be an important part of
the command generation cycle in mission operations,
and the associated user interface issues need to be con-
sidered carefully.

3. Approach

Figure 3 shows a proposed architecture for our science
autonomy system. In this architecture, sensor data is
first passed to several feature detectors, each looking



for a specific kind of feature. Once features have been
identified and segmented out of the background, they
are passed to one of several classifiers, depending on
feature type. For instance, if the feature is a rock, and
an infrared spectrum is available, the system will try
to infer the rock’s mineral composition. The experi-
ment generator uses this detailed feature information,
along with scientist preferences, to generate a list of
potential experiments (readings to take), each tagged
with a priority level. The science-aware planner gener-
ates a plan using these proposed experiments and any
explicit commands. The executive and functional lay-
ers execute the resulting plans, and enable the rover to
interact with the environment at a more detailed level
than is modeled by the planner; a discussion of these
modules is beyond the scope of this paper.
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Figure 3. Science autonomy architecture.

Now we will discuss each component in more detail.

3.1. Feature detectors

Some previous work has focused on segmenting rocks
from background soil and detecting sedimentary lay-
ering (Gulick et al., 2001), both useful capabilities for
our purposes. A potential thrust for us is detect-
ing medium-scale features such as outcrops and dry
streambeds, using a combination of images and 3D
stereo data. Sharp transitions in soil type, or in the
type and density of overlying detritus, can be used to
identify the boundaries between geological units. This
capability is useful not only for opportunistic science
(e.g., return an image of any layering you see), but
also for target recognition upon approaching targets

selected from orbital imagery.

3.2. Feature classifiers

Several kinds of classification could be useful. One ob-
vious example is determining the mineral composition
of rocks from spectra and other cues (Gazis & Roush,
2001). This is a well-studied problem in the context of
remote sensing, and has also begun to be addressed for
rovers. (Pedersen et al., 2001) used a Bayes classifier
with graph structure determined by a domain expert,
and off-line supervised learning of parameters. Other
classifier applications include identifying how weath-
ered a surface is based on spectra or texture cues, and
various indications of possible life, such as spiky tex-
ture, lumps or ring shapes, and presence of character-
istic colors (Figure 4).

On-line learning for rover science is relatively unex-
plored, but could be useful. During our recent trip
to the Atacama, we learned that many of the green
“lichens” we had seen were most likely sand grain sized
sediments of the green mineral chlorite, cemented to
salt. Similarly, a rover could learn that green color is
not strongly correlated to other signals of the presence
of life, and begin to use other cues.

Figure 4. Example photosynthetic life in the desert envi-
ronment: (above) presumably lichens; (below) less clear.



3.3. Experiment generator

This module essentially implements a preference func-
tion that maps feature type and sensor type to the
value scientists place on the resulting data set. As new
features are detected, new experiments (sensor read-
ings to take) are generated and prioritized. Our pro-
posed approach relies on a flexible set of rules. Each
rule fires when it matches a given feature and type of
sensor reading, indicating either increased or decreased
interest.

A more sophisticated preference function would also
take into account feature context, allowing scientists
to prioritize features that are anomalous relative to
their surroundings, distant from prior sensor readings,
or in a special location (just below an outcrop, on the
edge of a salar, on the windward side of a hill, etc.). If
there are a few rock types present in an area, it might
be desirable to return representative sensor readings
for one rock of each type. Both anomaly detection and
representative sampling would require on-line cluster-
ing (Cheeseman & Stutz, 1996).

3.4. Science interface

Existing rover command interfaces are geared towards
generating precise action specifications relative to the
known local surroundings of the rover. Some steps
have also been taken towards “over the horizon” nav-
igation. However, specifying preferences for what to
do when the rover gets over the horizon (not knowing
what is there) is a relatively open problem.

The science team should be able to tune the experi-
ment generator rule set in a variety of ways, such as:

• Specifying that a particular data set was inter-
esting, implicitly adding a rule to take the same
sensor reading in the future when we see features
similar to the one specified. Clustering similar
features would help enable this capability. Nega-
tive preferences could be added in the same way.

• If rules have parameters, such as relative weight,
the interface could help to tune the parameters by
presenting the science team with a series of what-
if scenarios. This would be particularly helpful if
there are rules that fire for more abstract reasons,
such as those that prioritize anomalies.

We should note that the ability to command the rover
to specific features will not be removed from the in-
terface. Explicit commands and preferences over not-
yet-seen features will both be available.

Our project is already collaborating with the Carnegie

Mellon Studio for Creative Inquiry to extend their
EventScope educational interface so that it can be used
for rover science operations (Coppin et al., 2002), (Fig-
ure 5). This system was tested successfully over six
days of operations during our first expedition. We an-
ticipate that preference specification will be integrated
into the EventScope interface.

Figure 5. The EventScope 3D educational interface.

3.5. Science-Aware planner

The rover should be able to weigh proposed exper-
iments and explicit commands against time, energy,
and other constraints to arrive at a plan. An impor-
tant point is that we are planning to gain information.
Sometimes the rover may take sensor readings not be-
cause they are explicitly prioritized by the scientists,
but because they are cheap to perform and return more
information about whether the expensive, valuable ex-
periments are justified. This kind of planning problem
can be formulated as a partially observable Markov
decision process (POMDP) (Cassandra et al., 1994;
Murphy, 2000).

Unfortunately, POMDP planning algorithms tend to
be extremely complex both in theory and in practice.
We will employ several techniques to help make them
tractable for this domain. Many POMDP algorithms
try to come up with a long-term policy at the be-
ginning, then follow that policy throughout execution.
We will instead rely on frequent replanning, focusing
during each planning episode on approximating the
best next action to take. This avoids excessive “what-
if” reasoning about situations the rover may never en-
counter. We are encouraged by a new class of value
iteration algorithms that solve large problems by fo-
cusing on reachable belief states (Pineau et al., 2003).



Other technical challenges for the planner include:

• Exploration vs. exploitation: The planner will
need to decide whether to perform detailed study
of known features or look over the hill for new
ones. An important question is how to model the
potential benefits of moving to a new area. Previ-
ous field experiments have tended to overempha-
size detailed study, which is understandable, given
that the science team wants to look at everything.
We believe that faster-paced operations can lead
to much greater science return. In the summer
of 1997, the Nomad rover performed one week
of science operations during its Atacama desert
trek. During one day of this week, the science
team was constrained to use only 25% of rover
time on sensing, the remaining 75% being spent
on moving from site to site. This “science on the
fly” operational scheme led to the only fossil find
of the week, and proved in general to be very pro-
ductive (Cabrol et al., 2001).

• Plan modification: As new features are detected,
new experiments will be proposed by the experi-
ment generator. The planner must be able to ef-
ficiently integrate resulting changes into its plan,
as some existing planners do (Chien et al., 1999).

• Integration with existing system: The TEMPEST
planner was used on Hyperion for the recent field
expedition (Tompkins et al., 2002). TEMPEST
considers time, terrain, and solar ephemeris to es-
timate power consumption and production, gener-
ating resource-cognizant plans for navigation that
also include pre-specified science operations. In-
tegrating science awareness into this already com-
plex planning framework may prove to be a diffi-
cult challenge.

4. Summary

As we have seen, several components of the proposed
science autonomy system can benefit from use of ma-
chine learning techniques, from feature classifiers to
clustering algorithms for anomaly detection. Differ-
ent types of training will be possible depending on the
application. Here are some examples:

• Pre-mission training (possibly supervised): Gen-
erate initial classifiers, e.g., for mineral composi-
tion, based on data from the lab or from an initial
shake-out period in the field.

• Daily training during mission (possibly super-
vised): Retrain parameters in classifiers based on

the frequency of different feature types observed
in the local environment.

• Training on the fly (unsupervised): Cluster fea-
tures observed at a new site so that sensor read-
ings for one representative feature of each type
can be returned.

In order to support planning to gain information, we
plan to focus on classifiers that explicitly model priors
and output probability distributions.

We are still in the early planning phases of our sci-
ence autonomy development, and the scope we will
eventually tackle remains to be defined. We hope for
continued input from the machine learning community
as we proceed.
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