Probabilistic Planning for Robotic Exploration

Trey Smith
CMU-RI-TR-07-26

Submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

July 2007

Thesis Committee:
Reid Simmons, Chair
Geoffrey Gordon
David Wettergreen
Leslie Pack Kaelbling (Massachusetts Institute of Technology)

(© 2007, Trey Smith.

ABSTRACT

Robotic exploration tasks involve inherent uncertainty. They typically include nav-
igating through unknown terrain, searching for features that may or may not be
present, and intelligently reacting to data from noisy sensors (for example, a search
and rescue robot, believing it has detected a trapped earthquake victim, might stop
to check for signs of life). Exploration domains are distinguished both by the preva-
lence of uncertainty and by the importance of intelligent information gathering. An
exploring robot must understand what unknown information is most relevant to its
goals, how to gather that information, and how to incorporate the results into its
future actions.

This thesis has two main components. First, we present planning algorithms
that generate robot control policies for partially observable Markov decision pro-
cess (POMDP) planning problems. POMDP models explicitly represent the uncer-
tain state of the world using a probability distribution over possible states, and they
allow the planner to reason about information gathering actions in a way that is de-
cision theoretically optimal. Relative to existing POMDP planning algorithms, our
algorithms can more quickly generate approximately optimal policies, taking ad-
vantage of innovations in efficient value function representation, heuristic search,
and state abstraction. This improved POMDP planning is important both to explo-
ration domains and to a wider class of decision problems.

Second, we demonstrate the relevance of onboard science data analysis and
POMDP planning to robotic exploration. Our experiments centered around a robot
deployed to map the distribution of life in the Atacama Desert of Chile, using oper-
ational techniques similar to a Mars mission. We found that science autonomy and
POMDP planning techniques significantly improved science yield for exploration
tasks conducted both in simulation and onboard the robot.

ACKNOWLEDGMENTS

Thanks to my advisor, Reid Simmons, for many years of red ink. It’s true, it does
make you stronger. Thanks to Dave Wettergreen, who as head of the Science on
the Fly project has been a co-advisor in all but name for the past few years. Thanks
to Geoff Gordon for many helpful discussions, and to Leslie Kaelbling for being
SO supportive.

Thanks to everyone on the Life in the Atacama and Science on the Fly projects
who made the robotic exploration component of this work possible—there are too
many to name everyone. Thanks to Nathalie Cabrol, Kim Warren-Rhodes, Jim
Dohm, Jen Piatek, Andy Hock, and everyone on the science team for believing in
us. Thanks to Dom Jonak, Chris Urmson, Stuart Heys, Chris Williams, Jim Teza,
Mike Wagner, Allan Liiders, Francisco Calderén, Vijay Baskaran, Dave Pane, Greg
Fisher, Alan Waggoner, and everyone on the engineering team for going the dis-
tance. Thanks to Shmuel Weinstein and the Giant Eagle meat department. Thanks
most especially to Dave Thompson, my partner in crime for science autonomy.

Thanks to Nick Roy, Joelle Pineau, Sebastian Thrun, Carlos Guestrin, Craig
Boutilier, Michael Littman, Pascal Poupart, Matthijs Spaan, Brendan McMahan,
and Guy Shani for interesting POMDP discussions. Thanks to Tony Cassandra for
freely distributing his POMDP software and models.

Thanks to Suzanne Lyons Muth, Jean Harpley, and Sanae Minick for admin-
istrative support that went above and beyond. Thanks to Gaurav Veda for helping
out with last-minute edits.

Thanks to many good friends and colleagues for their support over the years,
especially Vandi Verma, Brennan Sellner, Mark Maimone, Dave Hershberger, Kiri
Wagstaff, Arne Suppe, Paul Tompkins, Matt Deans, Liam Pedersen, Rich Wash-
ington, Illah Nourbakhsh, Andrew Moore, Red Whittaker, Mark Stehlik, and all
the Generalists and Salonniers.

Finally, thanks to my family for always being there, and to Sabrina for under-
standing.

DEDICATION

For my father, the towering presence.

Contents

Contents

1 Introduction
1.1 Thesis Statement
1.2 DocumentOutline
1.3 Focused Value Iteration (Chapter3)
1.4 POMDP Value Function Representation (Chapter4)
1.5 Max-Planes Approximation Bounds (Chapter5)
1.6 Heuristic Search (Chapter6)
1.7 State Abstraction (Chapter7)
1.8 Science Autonomy (Chapter8)
1.9 Software Contributions
1.10 Summary e

2 Probabilistic Planning Background
2.1 Deterministic Planning
2.2 Uncertainty in State Transitions
2.3 Policies and Value Functions
24 Valuelteration.,
2.5 Search Graphs and Policy Graphs
2.6 Partial Observability
2.7 Belief MDP Value Function Structure
2.8 Relating Max-Planes Structure to the Bellman Update
2.9 Prior Researchon POMDPs

29.1 Foundations.
2.9.2 Valuelteration
2.9.3 Point-Based Value Iteration
2.9.4 Value Function Representation
2.9.5 HeuristicSearch

19
20
21
22
22
23
24
25
26
27
28

CONTENTS

2.9.6 Structured Approaches L., 56
2.9.7 Policy Gradient Approaches 57
298 PolicyIteration 58
2.9.9 History-Based Approaches 59
2.9.10 Policy Heuristics 59
2.9.11 Continuous POMDPs 60
2.9.12 Decentralized POMDPs 61
2.9.13 Model Learning 61
2.9.14 Applications 62
3 Focused Value Iteration 65
3.1 Value Function Representations and Update Operators 66
3.2 Using Uniform Improvability to Bound Regret 67
3.3 Generating Uniformly Improvable Bounds 70
34 Point-Based Updates 72
3.5 The Focused Value Iteration Algorithm 74
4 POMDP Value Function Representation 77
4.1 Linear Algebra Notation 78
4.2 Constructing Uniformly Improvable Bounds 79
4.2.1 Lower Bound Initialization: The Blind Policy Method . . 79

4.2.2 Upper Bound Initialization: The Fast Informed Bound Method 80
4.3 Adding Planes to the Max-Planes Representation 82
4.4 Leveraging Sparsity with the Max-Planes Representation 85
4.4.1 Compressed Data Structures 86
4.4.2 Alpha Vector Masking (Novel Approach) 87
443 Masked Vector Performance Analysis 91
444 Complexity Comparison 93
4.5 Pruning the Max-Planes Representation 94
4.5.1 Pairwise Pruning (Prior Approach) 95
4.5.2 Lark’s Filtering Algorithm (Prior Approach) 95
4.5.3 Bounded Pruning (Prior Approach) 96
4.5.4 Passive Bounded Pruning (Novel Approach) 97
4.5.5 Combined Passive+Pairwise Pruning 100
4.6 Upper Bound Representation 101
4.6.1 Convex Hull Projection (Prior Approach) 102
4.6.2 Sawtooth Projection (Prior Approach) 106
4.6.3 Leveraging of Sparsity with Sawtooth (Novel Approach) . 110
4.6.4 Pruning the Sawtooth Representation 110
4.7 Hybrid Tabular Representations (Novel Approach) 111

6

CONTENTS

7

4.8 Experimental Performance 114
4.8.1 Performance Versus Time Plots 116
4.8.2 Equal Precision Comparison 119
4.8.3 Error Distributions 123
49 Conclusions 126
Max-Planes Approximation Bounds 129
5.1 Technical Background 130
5.2 Fully Tangent Bounds and Belief Sampling 131
5.3 Uniform Sampling 133
5.4 Concentrating Samples By Reachability 136
5.4.1 Reachability: Implications for Algorithm Design 140
5.5 Concentrating Samples By Curvature 141
5.5.1 Curvature: Implications for Algorithm Design. 145
5.6 Conclusions 145
Heuristic Search 147
6.1 ProblemClasses. 150
6.2 RTDPReview 151
6.3 Heuristic Search Value Iteration (HSVI) 152
6.3.1 HSVIBoundsIntervals 153
6.3.2 HSVI Action Selection 154
6.3.3 HSVI Outcome Selection 156
6.3.4 Running HSVI in Anytime Fashion 157
6.4 Focused Real-Time Dynamic Programming (FRTDP) 158
6.4.1 Search Graph Expansion 159
6.4.2 FRTDP Outcome Selection 165
6.4.3 Adaptive Maximum Depth Termination 167
6.5 Theoretical Results 168
6.5.1 HSVITermination 169
6.5.2 FRTDP Termination 174
6.6 ExperimentalResults 180
6.6.1 MDPResults 180
6.6.2 POMDPResults 185
6.7 Conclusions 189
POMDP State Abstraction 195
7.1 ExampleProblem 196
7.2 POMDPReview 198
7.3 Conditional Relevance 199

CONTENTS

7.4 Relevance Determination 201
7.4.1 Finding Immediately Relevant Variables 201

7.4.2 Finding Predictable Variables 202

7.4.3 Finding Conditionally Relevant Variables 204

7.5 Model Abstractiono 204
7.6 Application to MiniLifeSurvey 205
7.7 Application to LifeSurvey 206
7.8 Conclusions 207
8 Science Autonomy 209
8.1 Related Work on Science Autonomy 210
8.1.1 Onboard Science Data Analysis and Selective Data Return 210

8.1.2 Scientist Priorities 212

8.1.3 Science Autonomy Planning Systems 212

8.2 Robotic Investigation, 213
8.3 Autonomously Responding to Evidence of Life 216
8.3.1 The Fluorescence Imager (FI) Instrument 217

8.3.2 Chlorophyll Detection Experimental Procedure 217

8.3.3 Chlorophyll Detection Image Analysis 218

8.3.4 Chlorophyll Detection Experimental Results 220

8.4 Efficiently Mapping the Distribution of Life 221
8.4.1 Mapping Scenario 222

8.4.2 LifeSurvey Problem Definition 223

8.5 Experimental Evaluation 227
8.5.1 LifeSurvey Planners: Blind, Reactive, and POMDP 228

8.52 Omboard Testing 229

8.5.3 Simulation Testing: Adapting to Changes in the Problem . 230

8.5.4 Simulation Testing: Robustness to Model Error 233

8.6 Conclusions 236
9 Conclusions 239
9.1 Software Contributions 240
92 FutureWork L 241
9.2.1 Continuous Planning 241

9.2.2 Better Understanding of MDP Heuristic Search 242

9.2.3 Integrating POMDP Planning With Rover Operations . . . 242

9.3 Summary 243
Bibliography 258

CONTENTS

Author Index 259

CONTENTS

10

List of Figures

1.1
1.2

2.1
2.2
23
24
25

2.6

2.7

2.8

29

2.10

2.11
2.12

4.1
4.2
4.3
4.4
4.5

CIVA Process Diagram. 26
(left) The Zo€ rover in the Atacama Desert of Chile, (right) A

lichen detected by Zoé’s fluorescence imager. 27
A simple indoor navigation problem. 30
Navigation problem with uncertainty in state transitions. 31
Graphical model foranMDP. 32
Policy and corresponding value function for the navigation problem. 33

Search graphs: (left) A typical example. (right) The search graph

for a simplified version of the navigation problem. 38
A policy tree for the navigation problem with i = 3 and an exam-
plestate A. 39

Navigation problem with uncertainty in state transitions and partial
observability: (left) Fully expanded view of state transition. (right)

Information available to therobot. 41
Graphical model foraPOMDP. 42
Example policy trees and corresponding o vectors for the TIGER

POMDRP. 47
Optimal value functions at different time horizons for a typical

two-state POMDP. 000, 48
V* for an example three-state POMDP. 49
The relationship between composing policy subtrees and taking an

affine combination of transformed o vectors. 52
The relationship between V', H, ?PV, and HV. 84
Converting an « vector to masked form. 88
The masked max-planes representation. 90
Pruning results for various algorithms. 97
The convex hull representation. 104

11

LIST OF FIGURES

4.6 A point-based update to the convex hull representation. 105
4.7 The sawtooth representation. 108
4.8 Hybrid tabular representations. 113
4.9 Tag performance vs. wallclock time (s). 118
4.10 RockSample[5,7] performance vs. wallclock time (s). 119
4.11 LifeSurveyl performance vs. wallclock time (s). 120
4.12 RockSample[5,7] precision distribution with equal updates. 126
4.13 RockSample[5,7] precision distribution with equal wallclock time. 127
5.1 A max-planes approximation. L. 130
5.2 Subdifferentials of a convex function. 132
5.3 Uniform sampling vs. concentrating by reachability. 136
6.1 Asearchstrategy trial. 149
6.2 Relationship between a; ® VandHV.. 154
6.3 The explicit graph interior Z and fringe 7. 161
6.4 Anundiscounted MDP which causes HSVI to enter an infinite loop. 173
6.5 Progress vs. wallclock (s) for the LB and LBW MDPs. 186
6.6 Progress vs. wallclock (s) for the LR and LRW MDPs. 187
6.7 Progress vs. wallclock (s) for the Tag and RS57 POMDPs. 190
6.8 Progress vs. wallclock (s) for the LS/ POMDP. 191
7.1 CIVA Process Diagram. 196
7.2 The MiniLifeSurvey problem. 197
7.3 A state transition in the abstract model. 197
7.4 LifeSurveyl priormap. 207
8.1 The Zoég rover platform in the Atacama desert. 210
8.2 Our experiments build towards field deployment of POMDP plan-
ning for robotic exploration. 210
8.3 Map showing the location of LITA field campaign sites. From
Cabroletal. (2007). e 214
8.4 The microscopic fluorescence imager deployed and spraying un-
derneaththerobot. 215
8.5 Science autonomy experiments in the LITA project dealt with in-
struments and features at multiple scales. 216
8.6 Sample protocol flowchart. 0oL 218
8.7 Periodic sampling traverse. 218
8.8 Autonomous chlorophyll detection. 219
8.9 Representative sampling strategy at multiple scales. 222
8.10 LifeSurvey: Actions and testsite. 224

12

LIST OF FIGURES

8.11 LifeSurvey region maps and target layouts. 225
8.12 LifeSurvey simulation testing: planner performance vs. cost multi-
plier. 231
8.13 LifeSurvey simulation testing: planner performance vs. prior mul-
tiplier (holding simulation model constant). 235

13

LIST OF FIGURES

14

List of Tables

2.1

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1
6.2
6.3
6.4
6.5
6.6

8.1

TIGER problem parameters 46

Asymptotic time complexity of individual operations for different

implementations of ADDPLANE. 86
Asymptotic complexity of different implementations of ADDPLANE. 93
Value function experiments: Problem parameters. 116
Lower bound time performance. 121
Lower bound storage space. 122
Upper bound time performance. 122
Upper bound storage space. oo vvi .. 123
Summary of representation comparison. 128
Comparison of search strategy features 149
Search strategy termination conditions 168
Effort required to achieve the upper bound value VH({in for MDPs. . 185
Effort required to achieve the regret value €,,;, for MDPs. 185
Effort required to achieve the upper bound value anljin for POMDPs. 192
Effort required to achieve the regret value €,,;, for POMDPs. . . . 192
LifeSurvey onboard testing: planner performance. 229

15

LIST OF TABLES

16

List of Algorithms

2.1

2.2
2.3
3.1

3.2
3.3
4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9
6.1

6.2
6.3
6.4
9.1

UPDATESIGNATURE, a type signature for Bellman update imple-

MeNtations. e e e e e e e e 36
TABULAR, a Bellman update implementation. 36
Value iteration (Bellman, 1957). 37
INCREMENTALSIG, a type signature for incremental representa-

tion implementations. oL 75
SEARCHSIG, a type signature for heuristic search implementations. 75
Focused value iteration. 76
Blind policy lower bound initialization (Hauskrecht, 1997). 79
Fast informed bound upper bound initialization (Hauskrecht, 2000). 81
ADDPLANE, an incremental representation. 83
MASKED, an alternate implementation of ADDPLANE. &9
PAIRWISEPRUNE, a pruning algorithm for the max-planes repre-

SeNtation.o e e 95

LARKPRUNE, a pruning algorithm for the max-planes representation. 96
BOUNDEDPRUNE, a pruning algorithm for the max-planes repre-

SeNtation. e 98
CONVEXHULL, an incremental representation. 106
SAWTOOTH, an incremental representation (Hauskrecht, 2000). . . 110
Real-Time Dynamic Programming (RTDP), a search strategy (Barto

etal., 1995). 152
Heuristic Search Value Iteration (HSVI), a search strategy. 158
ConvergentHS VI, a driver for running HSVI in anytime fashion. . 159
Focused RTDP (FRTDP), a search strategy. 160
Continuous focused value iteration (variant of Algorithm 3.3). . . 241

17

LIST OF ALGORITHMS

18

Chapter 1

Introduction

Robotic exploration is an important emerging technology in applications that range
from planetary science to urban search and rescue to oceanography (Squyres et al.,
2004; Casper and Murphy, 2003; Leonard et al., 2007). In all of these domains,
communication difficulties can make it impractical to directly supervise robots as
they explore.

Planetary surface exploration in particular faces new autonomy challenges as
robot hardware becomes more capable. Future Mars rovers will be able to navigate
multiple kilometers in a single command cycle, likely passing several features wor-
thy of detailed study during each traverse. In order to take full advantage of these
opportunities to increase science yield, we would like the robot to plan its informa-
tion gathering intelligently. That is, it should follow a path likely to pass by inter-
esting features, focus preliminary scanning on likely areas, and perform followup
sampling when it detects something interesting (Wagner et al., 2001; Castafio et al.,
2003a).

In robotic exploration, uncertainty about the state of the world provides a con-
stant challenge to planning. A good exploration policy should:

1. Achieve baseline performance in both nominal and off-nominal cases. It is
not enough to generate an action sequence that achieves exploration goals
when execution proceeds as expected. The planner must reason about unex-
pected outcomes and ensure that there is a fallback plan.

2. Balance cost against reward. It is important to model the relative probabili-
ties of different outcomes to achieve good average-case performance.

3. Gather information as needed. Balancing information-gathering against other
actions requires the planner to reason not just about future world states, but

19

1. Introduction

also about how the robot’s future beliefs will affect its actions. This makes
planning much more difficult.

The focus of this work is to develop probabilistic planning techniques that address
these issues and significantly improve the efficiency of robotic exploration.

The first challenge in planning under uncertainty is choosing an appropriate
planning formulation. Many approaches have been proposed, embodying some-
what different modeling assumptions. Examples include contingent planning with
STRIPS-like operators (Draper et al., 1994), assumptive planning (Stentz, 1994),
and various heuristic or greedy approaches (Pedersen, 2000; Roy and Thrun, 1999).

Our work formulates exploration planning problems using partially observable
Markov decision process (POMDP) models. The POMDP framework is popu-
lar because it cleanly models probabilistic state transitions and noisy sensing, and
provides a decision-theoretically optimal metric for evaluating policies that include
information-gathering actions (Kaelbling et al., 1998).

Tractability is an important concern in POMDP planning. A POMDP policy
must specify the robot’s next action for every possible history of actions and ob-
servations so far. Unfortunately, the number of such histories is exponential in the
length of the planning horizon (“the curse of history”). Alternatively, history can
be summarized using the probability distribution over possible states as a sufficient
statistic. But there are an infinite number of such distributions, drawn from a con-
tinuous space with dimensionality that scales with the number of states (“the curse
of dimensionality”). Either way, optimal POMDP planning is intractable (Littman,
1996).

Faced with these complexity results, the POMDP community has turned its at-
tention to efficient approximate planning, resulting in a wide range of algorithms
(Aberdeen, 2003; Poupart and Boutilier, 2004). We focus on POMDP value itera-
tion, which works by approximating the optimal value function through relaxation
of the Bellman equation (Sondik, 1971; Cassandra et al., 1997). Our work relates to
a subclass of value iteration algorithms that focus their effort using “point-based”
updates that improve the value function in the neighborhood of a specific point
(Pineau et al., 2006; Spaan and Vlassis, 2005). We improve the performance of
these algorithms through innovations in the areas of value function representation,
heuristic search, and state abstraction. Our techniques can provide approximate so-
lutions with strong regret bounds for some POMDPs that are orders of magnitude
too large to be tractable with previous approaches.

1.1 Thesis Statement

Thesis: Probabilistic planning that reasons about information-gathering actions

20

1.2. Document Outline

can enable more effective robotic exploration.

We support this statement by presenting algorithms that make large-scale
POMDP planning more tractable. We applied these algorithms to robotic explo-
ration problems; policies generated using POMDP planning were shown to be sig-
nificantly more efficient than manually generated policies both in simulation and
onboard a robot.

1.2 Document Outline

e Chapter 2 provides background on MDP and POMDP planning.

e Chapter 3 presents focused value iteration, a unifying framework for un-
derstanding a variety of MDP and POMDP value iteration algorithms. The
framework cleanly separates the key issues of value function representation
and heuristic search for selecting points to update.

e Chapter 4 presents efficiency improvements for several POMDP value func-
tion representations. Techniques include o vector masking, passive bounded
pruning, and hybrid tabular representations.

e Chapter 5 is a theoretical analysis of the max-planes representation for
POMDP value functions. We improve previous bounds on the number of
« vectors needed to approximate the optimal value function V* within e.

o Chapter 6 presents the heuristic search algorithms HSVI and FRTDP, which
use lower and upper bounds on the optimal value function to guide both ac-
tion selection and outcome selection during search. Both algorithms provide
significantly improved experimental performance on benchmark problems.

e Chapter 7 presents the CIVA algorithm for compressing factored POMDPs
by temporarily abstracting away state variables in contexts where they are
provably irrelevant. With appropriate problem structure, CIVA produces an
abstract model that when flattened is exponentially smaller than the flattened
version of the original model.

e Chapter 8 presents results of two experiments in robotic exploration. The
first experiment, conducted in the Atacama Desert of Chile, showed that en-
abling a science rover to autonomously react to signs of life can significantly
improve its exploration efficiency. The second experiment, conducted in a
controlled outdoor environment, showed that by using advanced POMDP

21

1. Introduction

planning techniques we can tractably generate exploration policies that out-
perform simple manually generated policies.

e Chapter 9 presents our conclusions.

The following sections describe the main results of Chapters 3-8 in more detail.

1.3 Focused Value Iteration (Chapter 3)

Value iteration approaches for MDPs and POMDPs generate policies by first ap-
proximating the optimal value function V*. We introduce a theoretical framework
called “focused value iteration” that encompasses a range of value iteration algo-
rithms that keep two-sided lower and upper bounds on V*. These algorithms start
with weak initial bounds and gradually improve the bounds by making a series of
point-based updates.

The focused value iteration framework cleanly separates the key issues of value
function representation and heuristic search for selecting points to update. This
separation makes it obvious that heuristic search algorithms for fully observable
MDPs, such as RTDP and FRTDP, can be applied to POMDPs provided an appro-
priate value function representation is chosen (Geftner and Bonet, 1998).

The correctness of focused value iteration is based on the uniform improvabil-
ity of the bounds (Zhang and Zhang, 2001). We define the notion of a “conservative
incremental representation”, which is a value function representation and associ-
ated rules for initialization and point-based updates that together ensure the value
function is always uniformly improvable. We prove that when focused value it-
eration uses a conservative incremental representation: (1) individual point-based
updates can not make the bounds looser, and (2) the output policy satisfies a key
correctness property that bounds the regret. These properties apply across both
MDPs and POMDPs and are independent of how the heuristic search is conducted.

1.4 POMDP Value Function Representation (Chapter 4)

V* is usually defined as a function mapping beliefs to values, where beliefs are
probability distributions over possible states. A naive tabular representation of V*
would not be finite, since V* is defined over a high-dimensional continuous space.

However, V* is convex, which means it can be approximated arbitrarily well
with a number of finite representations. For example, the max-planes representa-
tion approximates V* using the maximum of a set of hyperplanes, also called «

22

1.5. Max-Planes Approximation Bounds (Chapter 5)

vectors (Sondik, 1971)," and the sawtooth representation uses an efficient approx-
imate projection onto the convex hull of a set of belief/value pairs (Hauskrecht,
2000).

We show that with appropriate initialization and update rules, the max-planes
representation is a conservative incremental representation for the lower bound and
the exact convex hull and sawtooth representations are conservative for the upper
bound. (Neither representation is conservative for both bounds.)

We present an improvement to max-planes called “«o vector masking” that
leverages sparsity by limiting the applicability of each a vector to a subspace of the
belief simplex. With appropriate problem structure, as problem sparsity increases,
the masking provides linear reduction in storage space and quadratic reduction in
update time. A similar technique is useful for the sawtooth representation, but with
weaker improvements.

We present a novel method for pruning dominated « vectors called “passive
bounded pruning”. Use of passive pruning reduces storage requirements nearly
as effectively as the bounded pruning used by Pineau et al. (2006), but has much
lower overhead because it reuses calculations performed during point-based up-
dates. Experiments show that relative to the pairwise pruning technique, passive
bounded pruning has similar running time but significantly improves space perfor-
mance.

We also present hybrid tabular representations, in which an underlying repre-
sentation (for example, max-planes or sawtooth) is combined with a tabular repre-
sentation that stores values only for a specific finite set of beliefs. The hybrid tab-
ular representation is conservative if the underlying representation is conservative.
In some cases the hybrid tabular representation provides better overall planning
time performance than the underlying representation alone, though not as much as
masking does.

1.5 Max-Planes Approximation Bounds (Chapter 5)

Many existing algorithms use the max-planes representation of the POMDP opti-
mal value function V*, so it is natural to ask how many « vectors are required to
approximate V* within e.

Pineau et al. (2006) developed one well-known bound. A finite set B is said
to cover the belief simplex 5 with sample spacing ¢ if every belief in B is within
distance ¢ of a point in B. Pineau et al. selected such a set and developed an
approximation to V* that associated one « vector with each point in B. They

"We are interested in approximations because the number of o vectors needed to represent V*
exactly is often intractable (for finite-horizon problems) or infinite (for infinite-horizon problems).

23

1. Introduction

showed that the max-norm of the approximation error was linear in the 1-norm
sample spacing.

We present two novel bounds along the same lines. The first generalizes the
result of Pineau et al. to include a certain type of non-uniform sample spacing. We
showed that for discounted POMDPs, tight spacing is needed only in the neigh-
borhood of beliefs that can be reached from the initial belief by within a few time
steps. Specifically, we show that a weighted max-norm of the approximation error
is linear in the sample spacing according to a weighted 1-norm. In turn, this im-
plies that executing a one-step lookahead policy based on the approximate value
function has bounded regret with respect to optimal policies.

The second bound relies on a transformation of the belief simplex that spreads
out the curvature of V*. We use uniform sampling in the transformed space, which
corresponds to concentrating samples in high-curvature areas of the original space.
We show that the max-norm of the approximation error is quadratic in the 2-norm
sample spacing. Roughly speaking, this reduces the number of o vectors needed
to achieve a given approximation error from n to \/n.

1.6 Heuristic Search (Chapter 6)

In many POMDPs, the vast majority of the belief space is irrelevant to reasoning
about good policies. Some beliefs are unreachable, others are reachable only if
provably sub-optimal actions are selected, and yet others are extremely unlikely to
be reached, so they can be neglected if one is willing to accept some approximation
errTor.

POMDP heuristic search algorithms leverage this structure by focusing value
function updates on the most relevant parts of the belief space. Some of these algo-
rithms build a set B of relevant beliefs and rely on batch updates that update either
all of B (Pineau et al., 2006) or a random subset of B (Spaan and Vlassis, 2005).
Others, like RTDP, interleave relevant belief selection and updates asynchronously
(Barto et al., 1995).2

We present two novel heuristic search algorithms, Heuristic Search Value It-
eration (HSVI) and Focused Real-Time Dynamic Programming (FRTDP). HSVI
can be viewed as a variant of RTDP that gains important benefits from fitting into
the focused value iteration framework. Whereas RTDP maintains only an upper
bound, focused value iteration algorithms maintain two-sided bounds on V*, pro-
viding a way to monitor progress so the search can be halted when a desired regret

ZRTDP is best known as a search strategy for fully observable MDPs, but with an appropriate
value function representation it can be applied to POMDPs, as Geffner and Bonet (1998) showed
with their RTDP-BEL algorithm.

24

1.7. State Abstraction (Chapter 7)

bound is reached. HSVI also uses the two-sided bounds to direct search more ef-
fectively, preferring to visit the states that contribute most to the uncertainty at the
initial state sg. By the same token, updating those states has the greatest potential
to reduce the regret bound.

FRTDP, like HSVI, prefers to visit states that contribute to uncertainty at sg.
However, FRTDP is less myopic. It uses cached priority information to avoid fruit-
lessly revisiting states that resist improvement. FRTDP also has an adaptive maxi-
mum depth (AMD) termination criterion to abort trials that run too long. The max-
imum depth increases adaptively from trial to trial as the search progresses. This
technique, proposed by Barto et al. (1995) but never implemented, helps to cut off
fruitless trials in “one-way door” problems, where irreversible early decisions can
make it much more difficult to reach a goal.

Within the modular focused value iteration framework, both HSVI and FRTDP
can be applied to both MDPs and POMDPs, but the two algorithms have different
convergence properties. We show that a weakened form of FRTDP called FRTDP-
AMD is guaranteed to converge over a class of finite “RTDP-solvable” MDPs.
HSVlIis guaranteed to converge when applied to discounted finite-branching MDPs,
a class that includes discounted POMDPs represented as belief-MDPs. We have
not been able to show that either algorithm converges over both problem classes.
We have found simple RTDP-solvable MDPs that cause HSVI to enter an infinite
loop. FRTDP appears to be robust over both classes in practice.

We compared the experimental performance of HSVI and FRTDP to RTDP
and several state-of-the-art search strategies. The benchmark problems included
four RTDP-solvable MDPs from the racetrack domain of Barto et al., along with
three large POMDPs. Compared to the other tested strategies, FRTDP requires the
least running time to achieve a specified regret bound across all of the racetrack
problems and two of the three POMDPs. HSVI failed to converge over most of
the racetrack problems and came in second to FRTDP over the POMDPs. Relative
to the competing approaches, both algorithms provided more than 10x speedup on
some problems.

1.7 State Abstraction (Chapter 7)

The state of a POMDP can often be factored into a tuple of n state variables. The
corresponding unfactored or “flat” model, with size exponential in n, may be in-
tractably large. This issue is important because most existing POMDP solvers
operate on a flat model representation, with only a few exceptions (Hansen and
Feng, 2000; Poupart and Boutilier, 2004).

However, in some problems there are efficient ways to identify irrelevant vari-

25

1. Introduction

(—r
factored (intractable) [exponentially
memmes large flat intractable
POMDP > POMDP ..(.)
N————/
approximately
@ optimal
policy
) C—— /
abstract expansion exponentially standard
factored . smaller solver
POMDP flat POMDP
— S ikt [HOWIIDI?)

Figure 1.1: CIVA Process Diagram.

ables that cannot affect the solution. In that case, the irrelevant variables can be
abstracted away, exponentially shrinking the state space in the flat model (Boutilier
and Dearden, 1994). If the overall task can be hierarchically decomposed into sub-
tasks, one can take a finer-grained approach and temporarily abstract away vari-
ables that are relevant overall but irrelevant within a particular subtask (Pineau
et al., 2003c). When interleaving planning and execution, the amount of abstrac-
tion may also vary at different planning horizons (Baum and Nicholson, 1998).

We developed an alternative method called “conditionally irrelevant variable
abstraction” (CIVA) for losslessly reducing the size of the factored model. A state
variable is said to be conditionally irrelevant for a given partial assignment to other
state variables if certain conditions are satisfied that guarantee it can be temporarily
abstracted away without affecting policy optimality. CIVA considers only factored
state, although factored actions and observations can also be useful (Guestrin et al.,
2001; Feng and Hansen, 2001). Figure 1.1 shows how CIVA fits into the overall
planning process. After CIVA is applied to reduce the factored model, it is flattened
to unfactored form and then passed to a POMDP solver.

We applied CIVA to previously intractable POMDPs from a robotic exploration
domain. We were able to compress the size of the unfactored state space from more
than 1024 states to less than 10%, putting the compressed POMDP within reach of
our focused value iteration techniques.

1.8 Science Autonomy (Chapter 8)

“Science autonomy” refers to exploration robotics technologies involving onboard
science analysis of collected data (Castaiio et al., 2003b). We demonstrated the
relevance of science autonomy and POMDP planning to robotic exploration in the
context of the Limits of Life in the Atacama project (Figure 1.2), a three-year
effort to study techniques for robotic exploration and map the distribution of ex-
tremophile life in the Atacama Desert of Chile (Cabrol et al., 2007). In order to

26

1.9. Software Contributions

Figure 1.2: (left) The Zog rover in the Atacama Desert of Chile, (right) A lichen
detected by Zo&’s fluorescence imager.

simulate Mars-like operational constraints, during Atacama field operations a team
of geologists and biologists commanded the Zo& rover once per day from Pitts-
burgh (Wettergreen et al., 2005).

We performed two main science autonomy experiments. While operating in
the Atacama, we enabled Zoé€ to react to preliminary signs of life by taking more
detailed followup measurements, and observed that this simple change improved
efficiency. This experiment provided us with valuable experience integrating sci-
ence autonomy technology with onboard software systems and with the command
cycle of remote science operations. It was the first demonstration of a science rover
autonomously reacting to the presence of life in the field.

Later, we designed a planning domain called LifeSurvey based on the science
goals of the Atacama expedition. In the LifeSurvey domain, the rover must plan
a path to maximize confirmed detections of life based on prior satellite data and
short-range noisy sensing. Solving the resulting POMDP models was extremely
challenging, as they had up to 10%* states in the uncompressed flat representation.

We showed that by combining our techniques for value function representa-
tion, heuristic search, and state abstraction, we could approximately solve these
POMDPs in less than 20 minutes, generating policies whose regret was bounded to
within 20% of the value of the optimal policy. The POMDP policies significantly
outperformed simple manually generated strategies, both in simulation and in tests
onboard Zoé€ in a controlled outdoor environment.

1.9 Software Contributions

Most of the algorithms and POMDP and MDP models used in this work are freely
available as part of the ZMDP software package, which can be downloaded from
my web page at http://www.cs.cmu.edu/ trey/zmdp/.

27

1. Introduction

ZMDP is written in C++ and runs on the Linux and Mac OS X platforms.
It reads POMDP and MDP models specified in Tony Cassandra’s model format,
providing a number of options for solving problems and plotting anytime algo-
rithm performance. It has been used to teach about POMDP solution algorithms in
one class (CMU 16-830: Planning, Execution, and Learning), and has been down-
loaded more than 200 times. Please do not hesitate to try it out, and contact me if
you have any problems.

1.10 Summary

We present several techniques for improving the scalability of MDP and POMDP
planning, in areas ranging from value function representation to heuristic search
to state abstraction. We used these techniques to solve extremely challenging
POMDPs related to robotic exploration, generating approximately optimal policies
with strong regret bounds. Our experiments with a rover in the Atacama Desert of
Chile and in controlled outdoor environments provide early validation both for the
overall concept of science autonomy and for POMDP exploration planning in par-
ticular.

28

Chapter 2

Probabilistic Planning
Background

“Probabilistic planning” describes a set of techniques that an intelligent agent can
use to choose actions in the face of uncertainty about its environment and the results
of its actions. “Probabilistic” means that the techniques model uncertainty using
probability theory and select actions in order to maximize expected utility. “Plan-
ning” means the techniques can reason about long-term goals that require multiple
actions to accomplish, often taking advantage of feedback from the environment to
reduce uncertainty and help select actions on the fly.

2.1 Deterministic Planning

Some background concepts are useful both for deterministic and probabilistic plan-
ning problems; we begin our review with a simple deterministic example problem.
Consider an indoor navigation task in which a robot must navigate to a goal po-
sition at the end of a hallway without colliding with the walls or other obstacles.
To start with, assume that the robot has a complete map of the hallway and that it
knows at all times both its own position and the position of the goal. Furthermore,
assume that to a first approximation we can model the robot’s position as taking on
discrete values in a map grid.

Figure 2.1 shows an example map for such a task. The planning problem is
to choose a sequence of one-step motion actions that will cause the robot at the
west side of the map to reach the goal at the east side without colliding with walls
or obstacles. One such sequence is east, east, north, east, east,
south. This is a classical discrete deterministic planning problem.

In general, this class of problem has world states drawn from a finite set S and

29

2. Probabilistic Planning Background

Sml

Figure 2.1: A simple indoor navigation problem.

actions available to the agent drawn from a finite set .A. State changes occur in
discrete steps according to a transition function 7' : § x A — &. The world starts
in some known state sg € S.

Under a deterministic world model it is natural to represent the agent’s policy
as a sequence of actions m = ag, ay, as,.... The corresponding world states the
agent will reach can be calculated using the transition function: s; = T'(so, ap),
S9 = T(Sl, al), etc.

Sometimes there is a prespecified maximum policy length; this is called a finite-
horizon problem, and the maximum number of actions is called the horizon length,
denoted h. Infinite-horizon problems have no prespecified maximum sequence
length, in which case we write h = co. There may also be a set G C S of absorbing
goal states, also called terminal states, such that the action sequence ends when a
terminal state is reached, regardless of the horizon.

There are many ways to formulate the planning problem. One might wish
to find any action sequence that achieves a goal state, or the shortest such action
sequence, or the lowest cost sequence (if actions have different costs). More gen-
erally, any of these preferences can be captured by specifying a utility function
U that maps the sequence of actions and corresponding states to a numeric score,
such that larger scores indicate preferred plans.

preference level = U (h, m, s0) = U(S0, a0, S1,01, -+, Sh—1,0h—1) 2.1)

Then “optimal control” means selecting a policy 7 that maximizes U (h, 7, Sg).

We focus on a restricted class of problems for which the utility function can be
expressed as a weighted sum of immediate reward values. Immediate rewards are
specified by a function R : S x A — R and

h—1
U(h,m,sg) :== Z*th(st,at). (2.2)
t=0

where v € (0, 1] is called the discount factor. Multiplying the reward at step
t by ! serves to place more weight on the earlier rewards in the sequence. If

30

2.2. Uncertainty in State Transitions

< Yo
‘ move east
success, p=0.5 failure, p= 0.5
el B < ¢

Figure 2.2: Navigation problem with uncertainty in state transitions.

v < 1 we say the problem is discounted; if v = 1 all time steps have equal weight
and the problem is undiscounted. Discounting is sometimes motivated by real-
world effects such as interest rates, but most often it is used as a convenient way of
ensuring that the reward sum converges in infinite-horizon problems.

The immediate reward framework is expressive enough to capture problems
that have both multiple independent goals and costs associated with each action
(expressed as negative rewards).

2.2 Uncertainty in State Transitions

A robot’s actions frequently have unexpected outcomes. For example, a robot at-
tempting to move using dead reckoning will often suffer from position errors due
to slippage. We can add an (exaggerated) version of this error to the original nav-
igation domain by assuming that each motion action has only a 50% chance of
achieving its desired effect, and leaves the robot in the same cell the other 50% of
the time. If the robot’s move is blocked by a wall or other obstacle, it fails 100%
of the time.

Figure 2.2 shows this kind of uncertainty graphically. The result of applying
the east action can no longer be predicted with certainty; instead, there are two
possible outcomes with associated probabilities. However, for the time being we
assume that after the action is completed the robot learns with certainty which
outcome actually occurred. (Perhaps it periodically receives accurate position in-
formation from radio beacons in the hallway.)

In general, this model requires a new type of transition function 7 : § x A —
I1(S) that maps a state/action pair to a probability distribution of possible next
states. T'(s, a, s") denotes the probability of transitioning from s to s when action
a is applied. Note that when 7' is specified in this form the system is Markovian,

31

2. Probabilistic Planning Background

ao al a2 EEER

Figure 2.3: Graphical model for an MDP.

meaning that its future behavior is conditionally independent of the history of states
and actions given the current state s;. For this reason the model is called a Markov
decision process (MDP).

Figure 2.3 shows the graphical model for an MDP. Square nodes in a graphical
model represent variables that are controlled by the agent. Circular nodes represent
uncontrolled dependent variables. Directed edges in the graph are used to indicate
dependence relationships between variables. Note the chain structure of the MDP
graphical model, which derives from the Markovian structure.

According to the decision-theoretic definition of rationality, in the presence of
uncertainty the agent should choose the policy that maximizes expected utility

h—1

Z Y R(st, at)] . (2.3)

t=0

preference level = E[U(h, 7, s0)] = Ex s

2.3 Policies and Value Functions

Optimal MDP policies can no longer in general be represented as a sequence of
actions. A robust policy needs to take into account the possibility of unexpected
action outcomes and react appropriately.

Any deterministic policy can be expressed as a function mapping the agent’s
available information to an action

a; = w(h, so,a0,S1,01, - .,5t). (2.4)

But it turns out that, because of the Markovian structure, the agent gains no ad-
vantage from conditioning on history—it can restrict its reasoning to policies that
condition only on the remaining number of steps to go and the current state

a; = 7(h, s¢). (2.5)
In infinite-horizon problems the remaining number of steps to go is always the

32

2.3. Policies and Value Functions

¥ > |y | L=, e 6 |4 |-2
|4 Y| o5, | 12|-10] -8 0

policy T value function V

Figure 2.4: Policy and corresponding value function for the navigation problem.

same (infinite) and the form of the policy simplifies to
ar = m(st). (2.6)

This form is called a flat policy or stationary policy or universal plan because it
specifies an action to take for any state, without any additional structure or time
dependence.!

Figure 2.4 (left) graphically represents an optimal policy 7 for the MDP form of
the navigation problem. Each non-goal cell of the map contains an arrow indicating
the action the robot should take in that state (that is, the direction it should move).

Figure 2.4 (right) shows the expected utility of different starting states when
executing the optimal policy on the left, under the assumption that the robot incurs
a cost of -1 for every move and the problem is undiscounted. Because every move
has a 50% chance of failure, the robot requires two moves on average to progress
one cell forward. Thus the expected total cost to the goal from any given cell works
out to be twice its distance from the goal.

The left side of Figure 2.4 represents a policy 7 that maps states to actions,
and the right side represents the corresponding value function V' that maps states
to expected utility values when executing . We can formalize this relationship in
general by defining an operator .J;, that maps any policy 7 to the corresponding
horizon h value function, such that if V' = Jm,

V(s) = Jpm(s) := E[U(h,m,so = s)]. (2.7)

In infinite horizon problems, we customarily omit the subscripts h and write V' =
Jr.

'"The exponential form of discount weights in (2.2) ensures that the resulting infinite-horizon
MDPs are stationary, meaning that the formula for calculating future rewards is the same at any time
step up to multiplication by the factor ~*, which is independent of future actions. This implies that
the same policies are optimal at any time step. Other formulations of the utility function may result
in non-stationary infinite-horizon MDPs; we do not consider that case.

33

2. Probabilistic Planning Background

There is also a natural way to turn a value function V' back into a corresponding
policy. Suppose the robot is in a cell s. Any action it takes will cause it to transition
with probability 50% to one of the neighbors of s. But since V' specifies the value of
each neighbor, it is easy to see that the robot should try to move to the neighboring
cell with the best (least negative) value. This method for calculating the policy is
called one-step lookahead.

For arbitrary MDPs, the appropriate generalization of this idea is the one-step
lookahead operator P, which is defined to map any value function V' to a policy 7,
such that if # = PV,

m(s) = PV(s) := arg max R(s,a) + ’yZT(s, a,sV(s')|. (2.8)

S

The expected reward from taking an action breaks up into the immediate reward
and the expected long-term reward from possible next states, weighted by their
likelihood. The agent should execute the action that maximizes this expected re-
ward.

Analogous to (2.8), the Bellman update operator H is defined to be a self map
over the space of value functions such that if V! = HV,

V'(s) = HV (s) := max | R(s,a) + ’}/ZT(S, a,s"V(s)|. (2.9)
a
s/
Intuitively, the Bellman update corrects the value of each state so that it is con-
sistent with the values of its possible successor states assuming the best action is
chosen. Bellman (1957) introduced the Bellman update and proved several results
that are fundamental to MDP planning:

1. Let P be the set of all policies. There is at least one policy 7* € P which
globally dominates all other policies in the sense that for any finite or infinite
horizon h and 7 € P, J,m* > Jym.2

2. Let 7* be an optimal policy. At any finite or infinite horizon h, there is a
(unique) optimal value function V" := J,7*. There may be several opti-
mal policies; at any given horizon h they all share the same optimal value
function V;*. When h = oo we customarily omit the subscripts / and write
V* =Jn*.

3. An optimal policy can be recovered from the optimal value function using

2Our convention is that equalities and inequalities between functions are understood to be point-
wise. For example, V' < V' means that V' (s) < V’(s) for all s in the domain of V.

34

2.4. Value Iteration

the one-step lookahead operator P according to 7*(h,s) = PV,* ;. In the
infinite-horizon case we customarily omit & and write 7*(s) = PV*. If
there are multiple optimal policies, they correspond to different tie-breaking
conventions for the arg max operator in (2.8).

4. The Bellman update H satisfies the recurrence V,* = HV;" ;. Thus, to-
gether with the identity Vj" = 0, it can be used to generate the optimal value
function at any finite horizon h.

5. In discounted infinite-horizon problems, the sequence V', V", V", ... uni-
formly converges to V. Thus by applying H enough times the optimal
value function V3 can be approximated to any desired degree of accuracy.

2.4 Value Iteration

Value iteration is an algorithm that uses repeated application of the Bellman up-
date to solve an MDP. In finite-horizon problems it generates the V}* functions for
a range of finite values of i and selects optimal run-time actions using one-step
lookahead according to a = 7*(h, s) = PV;"_,(s).

In infinite-horizon problems value iteration generates an approximation V' ~
V% and selects near-optimal run-time actions using one-step lookahead according
to a = m(s) = PV (s). We will focus our attention on the infinite-horizon case.

The first step in implementing value iteration is to choose a data structure for
representing the value functions V,* and an algorithm that calculates the Bellman
update for that representation. Algorithm 2.1 introduces the UPDATESIGNATURE
type signature that specifies the types and functions that an update implementation
must define. A complete implementation needs a data structure for representing
the value function, a way to calculate the the value V'(s) for any state s, a way to
generate the initial value function V{;, and a way to calculate the result HV of a
Bellman update. As we will see later, it is also useful to have a way to calculate
the residual or maximum difference between any two value functions.

Algorithm 2.2 defines TABULAR, which is a particularly straightforward up-
date implementation conforming to UPDATESIGNATURE. The TABULAR imple-
mentation represents a value function as a finite array of real values, indexed by
state. Evaluation of V (s) for a state s is simply an array lookup. The Bellman
update is implemented in the obvious way based on (2.9). Later we will see more
interesting update implementations for problems where the TABULAR implemen-
tation is impractical.

Finally, Algorithm 2.3 defines value iteration. Note that it is implemented as a
generic algorithm that can be used with any update implementation that conforms

35

2. Probabilistic Planning Background

Algorithm 2.1 UPDATESIGNATURE, a type signature for Bellman update imple-
mentations.

type V [the value function representation]
function evaluate: V x § — R

function initial ValueFunction: () — V
function globalUpdate: V — V

function residual: V x V — R

AN~

Algorithm 2.2 TABULAR, a Bellman update implementation.

: type TABULAR.V = finite array of real values, indexed by state

: function TABULAR.evaluate(V, s) :
return V (s)

1
2
3
4
5:
6: function TABULAR .initialValueFunction() :
7. forseS:

8 Vi(s) < 0

9: return Vj

10:

11: function TABULAR.globalUpdate(V) :

122 forseS:

13: V/(S) < Inaxg [R(S7 a) + v ES/GS T(S’ a, SI)V(S/)]
14: return V'’
15:

16: function TABULAR.residual(V, V') :
17: return maxges |V (s) — V'(s)]

to UPDATESIGNATURE. In order to instantiate value iteration, one substitutes an
actual implementation wherever the generic name <UPDATER> appears.

The logic concerning the § and e variables in the value iteration algorithm
serves to ensure that the resulting policy 7 has small regret, or expected loss rela-
tive to an optimal policy, which is defined to be

regret(m) := Jn*(sg) — Jm(so). (2.10)

Williams and Baird (1993) showed how to bound the regret of value iteration
for discounted infinite-horizon problems with the following result. If V! = HV

36

2.4. Value Iteration

Algorithm 2.3 Value iteration (Bellman, 1957).

: uses implementation <UPDATER> conforming to UPDATESIGNATURE

1
2:
3: function valuelteration(d) :

4: [returns a value function V' such that regret(PV’) < J]
5. V<« <UPDATER>>.initial ValueFunction()

6 loop:

7 V! « <UPDATER>.globalUpdate(V")

8 € <« <UPDATER>.residual(V, V")

9

: V «V
10: if2ey/(1—7) <6:
11: return V'
12:

13: function chooseAction(V, s) :
14: [used to select actions during policy execution]
15: return argmax, [R(s,a) +v> ., T(s,a,s’) <UPDATER>.evaluate(V, s')]

and € = |V — V’| s, then 3

|7 — IPV|_ < 29

, 2.13)

In other words, if the Bellman update that generated V'’ has a small residual ¢, then
the resulting policy PV’ has small regret. Intuitively, this is because the sequence
Vo', V5, Vs, ... converges to V3 taking smaller steps at each iteration of H, and
because near-optimal value functions result in near-optimal policies.

3The notation |-|__ refers to the £” norms used to measure distance between functions. For any
p € N*, discrete domain X, and functions f, ' : X — R,

1/p
If =71, = [Z lf(w)—f/(m)lp] : @.11)

zeX

and p = oo gives the so-called max-norm,
If=rl. = sup |f(z) — f'(=@)]. (2.12)

This notation naturally extends to continuous spaces X, replacing the discrete sum with an integral.

37

2. Probabilistic Planning Background

0.5 0.5 0.5
\/ 0.5 i i
1 0.5 0.5

Figure 2.5: Search graphs: (left) A typical example. (right) The search graph for a
simplified version of the navigation problem.

2.5 Search Graphs and Policy Graphs

The T'(s, a, s') transition function notation we have used so far encourages one to
think of an MDP model as a table of transition probabilities. However, it is often
more natural to think of the model as a search graph in which states are nodes and
transitions are edges. In a typical MDP each state has only a few neighbors (that
is, possible successor states) so that the resulting graph is sparse, and planning
algorithms can take advantage of the sparsity.

An MDP search graph is an AND/OR graph. Each state of the MDP has a
node in the graph, and each state/action transition of the MDP has a corresponding
k-connector in the graph, connecting a state s to the set of possible successor states
N(s,a) € S. Each outgoing edge of the k-connector to a successor state s’ €
N (s, a) is followed with probability 7'(s, a, s’) as before.

Figure 2.5 (left) shows a typical example search graph. Nodes are states, thick
arrows are k-connectors representing actions available to the agent, and thin arrows
represent outgoing edges of the k-connectors. Note that there may be multiple
paths through the graph that reach the same state. Figure 2.5 (right) shows the
search graph for a simplified version of the navigation problem in which the robot
can only move east or west. Note the presence of self-transitions and loops.

A policy graph is an alternative representation for a policy. Nodes in the policy
graph represent points where the agent must select an action. The agent begins
execution in a specified start node of the graph. At each time step it executes the
action specified by the current node, then transitions to a new node based on the
outcome of the action.

Figure 2.6 shows a policy graph 7 for the navigation problem with h = 3 steps

38

2.5. Search Graphs and Policy Graphs

3 steps to go A G

3

2 steps to go

1 step to go

Figure 2.6: A policy tree for the navigation problem with ~ = 3 and an example
state A.

to go and example state A. 7 is designed to be a robust policy for reaching the goal
from state A. In this policy, when a move fails, the robot reacts by attempting the
same move again.

A policy graph can be formally defined as follows. Let X be the set of nodes.
For any node z € X, the action to take is denoted A(x) and the children of x are
denoted C(x,). If there are k possible outcomes, i ranges from 1 to k. Execution
starts in node zg € X.

There is a close relationship between the search graph and the policy graph for
an MDP. During execution of the policy, the dynamic system steps through states
s of the search graph and the agent steps through nodes x of the policy graph in
synchrony. In order for the policy graph to make sense when applying action A(x)
in state s, there must be a mapping from the possible outcomes N (s,a) in the
search graph to outcomes C/(z, -) in the policy graph. In particular, if the policy
graph specifies outcomes using labels like success and failure, the MDP
model needs to use the same labels.

The policy graph is often taken to be a subgraph of the search graph in which
one action from each state node is selected for execution and the remaining actions
are discarded. When such a subgraph relationship holds, there is a one-to-one
correspondence between states s and nodes x. However, in general there need not
be such a relationship. During execution the same policy node may be reached
with many different world states, and vice versa.

The policy graph representation can be particularly compact for an MDP with
a short finite horizon h. Any deterministic policy for the MDP can be represented
as a depth h tree. With k-way branching at each step, the number of nodes at any

39

2. Probabilistic Planning Background

level ¢ of the tree is k?, so the total number of nodes in the tree is

h kh-i—l -1
nodeCount(k, h) = Y k' = —— (2.14)
t=0

which is exponential in h.

Let 73 be the set of all policy trees of depth h. In order to specify such a tree,
one must select an action for each node from |.A| possibilities, so the number of
possible trees is

ght1l_4

|,]71| — |A|n0deCount(k,h) — |.A| T (2.15)

which is doubly exponential in h. Although these quantities grow very rapidly as
h increases, they do not depend on the size of the state set. In contrast, specifying
a flat policy representation means selecting an action for each state, so the number
of possible flat policies is

1P| = Al (2.16)

which depends on |S| rather than nodeCount(k, i). Thus the relative ease of work-
ing with the different policy representations depends on the relative size the state
set and the node count of policy trees. The policy graph representation will be par-
ticularly advantageous later when we discuss MDPs with continuous state spaces.

Although our policy graph discussion has so far focused on trees, a general
graph can often represent the same policy more compactly. Nonetheless, in search-
ing for an optimal policy, it suffices to consider only trees, since a general graph
can be converted to a tree by selecting one node as the root, then “unrolling” the
graph by cloning nodes that can be reached via multiple paths. Note that in infinite-
horizon problems, a finite graph with loops unrolls into an infinite tree.

2.6 Partial Observability

In the last section we rather unrealistically assumed that the navigating robot re-
ceived perfectly accurate position information after every time step. In this section,
we relax that assumption. In particular, suppose the robot cannot tell how far along
the hallway it has traveled. Instead, it has a noisy obstacle sensor that nominally
returns an obstacle reading when the map cell to the east of the robot is blocked
and a clear reading otherwise, but gives an incorrect reading 10% of the time.
Figure 2.7 shows the resulting uncertainty graphically. As before, the east
action can cause a transition to either of two states, but now we have the additional

40

2.6. Partial Observability

1G] | _ G| |
‘ move east move east

success, p=0.5 failure, p=0.5

0= obstacle, p = 0.5 o= clear,p=0.5

e smnls EEn
0.10.9 | Jo.90.1

o = obstacle, p = 0.9 0= obstacle, p=0.1

Figure 2.7: Navigation problem with uncertainty in state transitions and partial
observability: (left) Fully expanded view of state transition. (right) Information
available to the robot.

complication of the noisy observation. Taken together there are four possible re-
sults, labeled condition A (success, obstacle observation), B (success, clear
observation), C (failure, clear observation), and D (failure, obstacle obser-
vation).

Unfortunately, because the robot receives only the observation, it cannot distin-
guish between conditions A and D, nor between conditions B and C. As a result, its
available information is better represented by the transition diagram on the right.
Conditions A and D have been combined into condition AD, and B and C have
been combined into BC. Looking more closely at condition AD, we see that the
robot cannot infer its position with certainty, since condition A and condition D
have the robot in different positions. Instead, the likelihoods of possible positions
of the rover are marked on the map; the values correspond to the relative likelihood
of condition A and condition D.

This type of model is called a partially observable Markov decision process
(POMDP). In general, a POMDP is an MDP extended to include an observation
model. Rather than receiving complete state information s; after each step of ex-
ecution, in a POMDP model the agent is assumed to receive a noisy observation
O¢.

POMDPs model observations probabilistically. The set of possible observa-
tions is a discrete set (3, and each observation carries information about the pre-
ceding action and current state according to the noisy observation function O :
A x § — II(0O), defined such that

O(a,s',0) :=Pr(ot41 =0 | ar = a, sp411 = §'). (2.17)

41

2. Probabilistic Planning Background

ao al az EEEE
SO Sl SZ []
01 O2 []

Figure 2.8: Graphical model for a POMDP.

The agent is also assumed to have a probability distribution by € II(S) describing
the initial state of the system, such that by(s) = Pr(sp = s). In general, we
describe a probability distribution over S as a belief, and denote the space of beliefs
with B = II(S). Beliefs can be thought of as length-|S| vectors, and because the
entries of a belief vector must sum to 1, B is a simplex of dimension |S| — 1
embedded in RIS

Figure 2.8 shows the graphical model for a POMDP. The chain structure of the
state sequence from the MDP is retained, but the agent no longer has direct access
to the state information at each time step. Instead, it can infer only uncertain state
information from the history of observations.

At each time step, the agent can use Bayesian reasoning to generate an updated
belief that takes into account a prior (using the previous belief and the probabilis-
tic transition model) and the most recent observation (using the noisy observation
model). Let b*° denote the agent’s updated belief at the next time step after taking
action a and receiving observation o. That is,

b*(s") := Pr(syp1 =8 | by = b,a; = a,0p41 = 0). (2.18)

The updated belief can be calculated as follows:

b*°(s") = Pr(s’ | b, a,0) (2.19)
_ Pr(s',0b,a)

~ Pr(o]|b,a) (2:20)

_ Pr(o|a,s')) Pr(s'| s,a)Pr(s | b) 201

=S Pr(o] a,5) 5, Pr(s | 5,a) Pr(s | b) @21)

Oa,o,0) 55, T(5,0,5)0(5 o)

T 3°.0(a,5,0) 3, T(s, a,5)b(s)

42

2.6. Partial Observability

When planning in an MDP model, the agent’s policy could be conditioned on a
history of states and actions. In a POMDP model, the agent has knowledge only of
actions and observations, so a deterministic policy with horizon h has the form

a; = w(h,ag,01,a1,02,a2,...,at-1,0). (2.23)

With an MDP, the history could be safely discarded given the current state because
the system was Markovian. With a POMDP, the agent does not have access to the
current state, but it can use the current belief as a sufficient statistic for the history.
Thus, given the current belief, the agent gains no advantage from conditioning on
history, and it can restrict its reasoning to policies in the form

at = 7T(h, bt) (224)

This change of variables suggests transforming the POMDP into a belief MDP, as
follows:

1. The POMDP belief simplex B plays the role of the MDP state set.

2. The action set, horizon, and discount factor of the POMDP are used un-
changed for the belief MDP.

3. The transition function 7" of the belief MDP gives the probability of transi-
tioning from one belief to another according to the observation model and
belief update rule

T(b,a,b') :=Pr(t | b,a) (2.25)
= ZPr(b’ | b,a,0)Pr(o|b,a) (2.26)

= Z 5(b', %) Z O(a, s',0)T(s,a,s")b(s), (2.27)

where §(z,y) = 1 if x = y and 0 otherwise.

4. The reward function R gives the expected immediate reward from applying
an action in a given belief

R(b,a) := Ep,—p[R(s¢,a)] (2.28)
= R(s,a)b(s). (2.29)

Note that the state set of the belief MDP is the POMDP belief simplex, which

43

2. Probabilistic Planning Background

is uncountably infinite. Although our earlier discussion of MDPs assumed that the
state space was finite, the same theoretical results go through with an infinite state
set. For instance, assuming the Bellman update computations can be realized, we
can apply value iteration to the belief MDP and generate a policy with the same
regret bounds presented in §2.4.

2.7 Belief MDP Value Function Structure

The value functions of belief MDP policies have a special structure that makes it
possible to generalize value iteration. For any finite horizon h, the optimal value
function V; is piecewise-linear and convex (PWLC).

To see where this structure comes from, imagine selecting a particular policy
tree 7 and evaluating its expected reward starting from different initial beliefs by.
Since 7 is a policy tree, the actions it selects during execution are completely de-
termined by the agent’s observations. These observations and the states reached by
the system in turn depend on the initial state sg, but they are not explicitly condi-
tioned on the initial belief by. Once the policy 7 and an initial state sq are specified,
the trajectory of the system (states, actions, and observations) is a random process
that is independent of by. As shown below, it is because of this conditional inde-
pendence that the value function Jp 7 is linear in the initial belief.

Formally, let 7 be any policy whose actions are not conditioned on the initial
belief (such as a policy tree) and let « be a length-|S| vector such that () is the
expected value of following 7 starting from state s:

h—1
a(s) = Er sy=s [Z *th(st,at)] . (2.30)

t=0

44

2.7. Belief MDP Value Function Structure

Then the value of executing 7 starting from a belief b is

h—1
Jnm(b) = Er po=b [Y R(st, a4] (2.31)
t=0
h—1
= Er ot |)V R(st, 1) (2.32)
t=0

h—1
> A" R(st, at)] (2.33)
= b(s)a(s) (2.34)

_ a7, (2.35)

where (2.32) follows from the fact that the visited states s; and selected actions a;
are conditionally independent of by given 7 and sg.

Abusing notation, we also write
a(b) == alb, (2.36)

When the max operator is applied to a set of a vectors, each vector is interpreted
in this second sense, as a function over the belief simplex. In other words, if

V =max{ay,...,an}, (2.37)
then

V(b) := maxa/ b. (2.38)

€7

It helps to look at policy trees in the context of a concrete example problem.
We use the well-known TIGER POMDP (Cassandra et al., 1994). In the TIGER
problem, you stand before two doors. Behind one door is a tiger and behind the
other is a pot of gold, but you do not know which is which. Thus there are two
equally likely states—the tiger is located either behind the left or right door (the
tiger—left or tiger—right state). You may try to learn more using the
1isten action, which provides information about which door the tiger is lurking
behind, either the noise—left or noise-right observation—the observa-
tion has an 85% chance of accurately indicating the location of the tiger. Alter-
nately, you may choose to open one of the two doors using the open—-left or
open-right actions, at which point the game ends and you will either happily

45

2. Probabilistic Planning Background

s =tiger-left s=tiger-right

bo(s) 0.5 0.5
R(s,open-left) -100 10
R(s,open-right) 10 -100
R(s,1listen) -1 -1

O(listen,s,noise-left) 0.85 0.15
O(listen,s,noise-right) 0.15 0.85

Table 2.1: TIGER problem parameters

receive the gold (reward +10) or be eaten (reward -100). The parameters of the
POMDP are summarized in Table 2.1; the discount factor v = 0.95.

Figure 2.9 shows some example two-step policy trees for the TIGER POMDP
and the corresponding « vectors. The belief b varies along the x axis of the plot,

from

100% certainty of tiger—left at the extreme left to 100% certainty of

tiger—right at the extreme right. Each line in the plot relates to one of the
policy trees as follows:

Policy A: You select 1isten, then select open—-right if noise-left
is heard (and otherwise listen again). This is a good policy in the
tiger—-left state, since the most likely course of events is that you will
hear noise-left and then perform the open-right action, receiving
the pot of gold. Policy A performs poorly in the tiger—right state—it
usually causes you to receive a small penalty for listening twice, and in the
worst case you get a false noise—-1left reading and are eaten by the tiger.
This is reflected in the policy A value function, which is at its highest in
the tiger-left state and slopes down as the probability of being in the
tiger—-right state increases.

Policy B: This policy is symmetrical with policy A—it works best when there
is a high probability of being in the tiger—-right state.

Policy C: You listen, then open whichever door you hear a noise behind.
This policy is clearly a bad idea regardless of what the you believe, since it
preferentially opens the door where the tiger is located! This is reflected in
its uniformly poor value function.

Let 7, = {m1,...,m,} be the set of all policy trees of depth h as before, and let

Ty =

{aq,...,a,} be the corresponding set of « vectors. The optimal value for

46

2.7. Belief MDP Value Function Structure

0 b(tiger-right) 1

Figure 2.9: Example policy trees and corresponding o vectors for the TIGER
POMDP.

any particular belief b is the largest value assigned to b by any policy tree, meaning

Vi'(b) = max Jp7w(b) (2.39)
€T

= maxT}, (2.40)

= max a’b (2.41)
acl'y,

In other words, for any finite h, the function V}* can be written as the maximum
of a finite number of linear functions. We call this the max-planes representation.
The existence of this representation means that V" is a PWLC function.

Figure 2.10 shows optimal value functions V;* for a typical two-state POMDP,
for several values of h. For each value of h, the thin lines are individual « vectors,
each corresponding to a depth h policy tree, and V}" is the upper surface of all
these o vectors, represented with a thicker line. The number of « vectors needed
to represent V" tends to increase with h, and in the limit V3 may contain a count-
ably infinite number of « vectors, in which case it is still convex but no longer
piecewise-linear.

Note that the value function for policy C in Figure 2.9 is everywhere dominated
by policies A and B. It turns out that in a typical POMDP most policy trees from 7j,
are, like policy C, sub-optimal for every belief. This means that the corresponding
« vectors are not part of the upper surface of V,*. These dominated o vectors can

47

2. Probabilistic Planning Background

V.(b)

E V(D)
—i

0 b(1)

—_—

Figure 2.10: Optimal value functions at different time horizons for a typical two-
state POMDP.

be pruned from the set I';, without affecting the value function. Pruning dominated
vectors can exponentially reduce the size of the value function representation; thus
it plays an important role in practical POMDP value iteration algorithms.

So far we have graphed value functions for POMDPs with just two states.
POMDPs with more states have the same value function structure, but since the
value function is defined over a high-dimensional space of beliefs it is naturally
harder to visualize. Figure 2.11 provides some geometrical intuition by showing
the upper surface V,* for an example three-state POMDP. The hatched area below
the surface represents the domain over which V}* is defined.

2.8 Relating Max-Planes Structure to the Bellman Update

Since all of the V}* functions have max-planes structure, it should come as no sur-
prise that the Bellman update that generates them preserves this type of structure,
as formalized in the following result.*

“It is well known that the V}* functions produced by value iteration are PWLC. Our analysis is
unusual in that it explicitly identifies certain linear structure within A and assumes only that the
value function passed to H is convex. It is possible that this result is novel.

48

2.8. Relating Max-Planes Structure to the

Bellman Update

supremum of a set I' of a vectors:

Vv, (b

b(1)

4

Y
XY
X

%%
%
o

<X
- <
%

oo %e%

X

<
5,

%

<
3

.0’0‘

oS

9y

00

%
9%

%
X
%

%
29598
bo%et
355

<

‘A

<\
XX

e
$5%%
%e%%

)
5
5255
2
020!
KK
KK
S
5K
20!
K00
5
S
A

35S
SRS
%

X3
TN
BN
555
%8}
35
35
%5
5

<

2958
35

wﬁﬁ%@%&
XK
R399 030%0%0 %050
L EERLIIRRS
05K

o
&L
b=(0,0,1) e KKK
S

29%9%
SRS
3K
%
35S
o
5%

o
%
%!
b2
2008

<
;Q‘:
020

:’ .:
02000,

<
0%
9%
KR
KL

%
%
35

0
535
55

S
35

PR

<X

K>
£
e

b=1(0,1,0)

b(0)

Figure 2.11: V* for an example three-state POMDP.

V(b) = supalb.
acl’

Recall the definition of H for belief MDPs,
HV (b) = max [R(b,a) +v > _T(b,a,b)V(¥)].

bl

Theorem 2.1. The Bellman update H preserves the max-planes structure present
in its input. Specifically, if V is convex (or PWLC) then HV is convex (or PWLC).

Proof. Let V be a convex (PWLC) value function. From the theory of convex
functions, we know that V' is convex if and only if it can be represented as the

(2.42)

(2.43)

=:Xq(b)

Some basic properties from the theory of convex functions are:

(P1) If F is afinite set of functions that are all convex (PWLC), then the pointwise

max function b — maxycx V (b) is convex (PWLC).
.,¢n > 0 are real scalars,

P2) If Vq,...,V, are all convex (PWLC), and ¢
then c1Vq + - - - + ¢, V}, is convex (PWLC).

49

1y

2. Probabilistic Planning Background

(P3) If V is convex (PWLC) and K is linear, then the function composition V o K
is convex (PWLC).

From (2.43), applying (P1) and (P2) we see that in order to prove HV is convex
(PWLCQ), it suffices to show that the functions R(a) and X, are convex (PWLC). 3
We can immediately verify from (2.29) that R(-,a) is linear and thus PWLC. It
remains only to show that X, is convex (PWLC).

Expanding,

= ZT(b, a, b))V (1) (2.44)

= ZPr b | b,a)supa’ b’ (2.45)
b ael

= ZPr 0| b,a)supalb® (2.46)

acl

= Pr(o| b,a)sup (s (2.47)

Z [bajup > als
Pr (s',0]b,a)

= Pr(—_ 2.4
Zro[bazlérlzz Pro\ba) (2.48)

= sup "NPr(s' o] b,a (2.49)
;ael“z |)

= su O(a,s',0)T(s,a,s)b(s (2.50)
z{,:aéﬁz Z (a,',0)T (s, a,5")b(s)

Define the linear mapping M : RIS — RISI such that

(M®*b)(s') :=Pr(s',0| b,a) ZO a,s',0)T(s,a,s)b(s). (2.51)

SHere we use R(-, a) to indicate the mapping b — R(b, a). In general, the “” notation is useful
for constructing a single-argument function by fixing the value of all but one argument of a multiple-
argument function.

50

2.8. Relating Max-Planes Structure to the Bellman Update

Substituting (2.51) into (2.50),

= sup Z) (M) (s") (2.52)

, o€l
sup ozTM‘wb (2.53)

, o€l
= (Vo M™)(b). (2.54)

Thus, since V' is convex (PWLC) and each mapping M *° is linear, applying (P2)
and (P3), we see that X is convex (PWLC).]

We can get further insight into the relationship between the o vectors of V' and
the a vectors of HV. Let k = |O|. Combining (2.43) and (2.53),

HV(b) = R(b, T ppacy, 2.55
(b) = max [R(b,a +7§0:zlérr>a] (2.55)

= max su R(b,a) + ol Maob 2.56

ma (al,..‘,ai’)erk[(b,a) vzoj] (2.56)

= max su R(b,a) + M*Ta)Ty]. 2.57
max (al,...,al,j)erk[(b,a) +7) ()" 0] (2.57)

Define

.= {R(, a) + VZM‘IOTQO

Combining (2.57) and (2.58), we find that

a € A, (al,...,ak)ef‘k}. (2.58)

HV (b) = sup a’b, (2.59)
a€el”

or in other words, I is a max-planes representation of HV .

Equation (2.58) shows how after a Bellman update, each o vector of the result-
ing max-planes representation I’ formed from an affine combination of k trans-
formed « vectors from I that have passed through the mappings M “°”" for varying
values of o.

It turns out, in fact, that the policy evaluation operator J;, is a homomorphism
from 7}, to I'y, such that if 7 € 75, and o« = Jj, 7, then the k transformed vectors
that combine to form « correspond to the k depth A—1 policy subtrees that combine
to form 7.

Figure 2.12 graphically shows this relationship. On the left we see three «

51

2. Probabilistic Planning Background

(a)
/& /

I, L,

Figure 2.12: The relationship between composing policy subtrees and taking an
affine combination of transformed « vectors.

vectors from I'j,_1, along with their corresponding policy trees, labeled X, Y, and
Z. In the middle, the o vectors have been transformed by the mappings M7 for
varying values of 0. On the right, we have taken a linear combination of the vectors
and added the immediate reward R(, a) to form one of the o vectors in I'y,. This
vector is the value function of the tree formed by selecting action a at the root and
transitioning to one of the subtrees X, Y, or Z based on the resulting observation.

2.9 Prior Research on POMDPs

There is a rich literature of prior work on POMDPs. We briefly review research
in several areas. A separate discussion of prior work on science autonomy and
exploration planning is found in §8.1.

2.9.1 Foundations

Drake (1962) and Astrom (1965) formulated the POMDP planning model. Sondik
(1971, 1978) developed the first POMDP solution algorithms. Papadimitriou and
Tsitsiklis (1987) provided early computational complexity results for MDPs and
POMDPs. More recently, Littman (1996) and Cassandra (1998a) analyzed the
complexity of various classes of POMDPs.

2.9.2 Value Iteration

Many early POMDP solution algorithms performed exact value iteration using
piecewise linear convex value function representations (Sondik, 1971; Monahan,
1982; Cheng, 1988; White, 1991). These algorithms had high computational com-

52

2.9. Prior Research on POMDPs

plexity both in theory and in practice; they were largely impractical given the com-
puting hardware available at the time.

The process of computing the Bellman update H used by value iteration can
be broken up into (1) choosing a set of important beliefs, and (2) at each selected
belief, performing a local “point-based” update that calculates the optimal « vector
for that belief from HV (Cheng, 1988). The Witness algorithm (Littman, 1996)
uses this idea to compute an exact Bellman update using a series of local updates at
points selected using linear programs. Witness is more tractable than earlier exact
VI techniques because it generates far fewer dominated « vectors.

The Incremental Pruning algorithm (Cassandra et al., 1997) achieved similar
performance improvement. Incremental Pruning breaks up calculation of the Bell-
man update into a series of batch operations and interleaves these operations with
pruning steps so that dominated « vectors are pruned earlier in the calculation.

Larger POMDPs require approximation techniques discussed below, including
more compact approximate value function representations and point-based value it-
eration techniques, which break up the global Bellman update into smaller focused
updates.

2.9.3 Point-Based Value Iteration

The Witness algorithm computes an exact Bellman update using a series of point-
based updates at carefully selected points. On the other hand, if we are willing
to accept some approximation error in the Bellman update, we can get away with
updating fewer beliefs and selecting them less carefully. This is the key idea behind
point-based value iteration algorithms.

The first algorithms in this class, Cheng’s Point-Based Dynamic Programming
(Cheng, 1988) and Zhang’s Point-Based Value Iteration (Zhang and Zhang, 2001),
maintain their value function in the form of a set of « vectors and, associated with
each vector, a “witness” belief where the vector dominates all other vectors. They
interleave many (cheap) point-based updates at the witness points with occasional
(very expensive) exact Bellman updates that generate new « vectors and witness
points. The algorithms differ mainly in their process for selecting witness points.

Batch update methods keep separate sets of pre-update av vectors and post-
update « vectors, discarding the pre-update vectors after the batch is complete.
Asynchronous update methods like the Incremental Linear-Function Approach
(Hauskrecht, 2000) keep a single set of o vectors and add new vectors to the set
as they are generated, so that they can immediately benefit subsequent point-based
updates. Because old vectors are not automatically discarded, with asynchronous
updates it becomes more important to carefully prune dominated vectors, so as to
keep the representation compact.

53

2. Probabilistic Planning Background

Pineau’s Point-Based Value Iteration (PBVI) (Pineau et al., 2003b, 2006) is
perhaps the most widely used point-based algorithm. PBVI selects a finite set
B of beliefs and performs point-based updates on all points of B in synchronous
batches until a convergence condition is reached, then uses a heuristic to expand
BB and continues the process. They show that each batch update approximates the
Bellman update and repeated batch updates converge to an approximation of V*
whose error is related to the sample spacing of B. In extensions of this work, they
improved the heuristic for selecting new beliefs (Pineau and Gordon, 2005) and
improved update efficiency by storing witness points in a metric tree (Pineau et al.,
2003a).

The PERSEUS algorithm (Spaan and Vlassis, 2005) uses batch updates that are
slightly weaker but considerably faster than those of PBVI. During each update,
PERSEUS backs up randomly sampled points from B, stopping when all points of
BB have higher values than they did according to the previous value function. Since
a single « vector often improves the value of several points, the batch usually
requires many fewer than |l§’| point-based updates.

2.9.4 Value Function Representation

There has been considerable prior work on POMDP value function representation;
Hauskrecht (2000) provides a good survey. We mention only a few papers here.

The use of the max-planes representation, also called the piecewise linear con-
vex (PWLC) representation, goes back to some of the earliest work on POMDPs
(Sondik, 1971). Max-planes representations constructed during value iteration usu-
ally contain many dominated o vectors that must be pruned for efficiency; many
researchers have considered different pruning approaches (Sondik, 1971; Mona-
han, 1982; White, 1991; Littman, 1996; Cassandra et al., 1997).

Pineau et al. (2006) showed that if a max-planes approximation is formed by
taking the gradient at beliefs in a sample set, the max-norm error of the approxi-
mation is linear in the sample spacing according to the 1-norm. In Chapter 5 we
generalize this result using weighted norm machinery. Bertsekas and Tsitsiklis
(1996) includes a useful discussion of weighted norms. Munos (2004) found some
related results applying weighted max-norm machinery to value iteration.

Approximating V* using the max-planes representation is an instance of the
general problem of approximating a convex body with a circumscribed polytope.
This is the subject of a rich parallel literature in operations research and mathe-
matics journals. Rote (1992) gives an overview and a detailed quantitative analysis
for plane figures. Gruber (1993) developed a number of asymptotic bounds for
approximating convex bodies in arbitrary dimensions.

Whereas the usual max-planes representation takes the maximum of its individ-

54

2.9. Prior Research on POMDPs

ual « vectors, the SPOVA algorithm (Parr and Russell, 1995) combines « vectors
using a soft-max function. This makes the mean Bellman residual over any set
of sample beliefs a differentiable function of the o vectors, so the residual can be
minimized (generating an approximation of V'*) through gradient descent.

Hauskrecht (2000) proposed an alternative PWLC representation, computing
values by projecting onto the convex hull of a finite set of belief/value pairs. The
exact convex hull is of course PWLC; an approximate convex hull called the “saw-
tooth” representation is not convex, but projections can be computed more effi-
ciently.

Several researchers have used grid-based value function approximations, in
which the belief simplex is broken up into local cells, and the approximation has
some simple behavior within each cell. For example, it might be constant, or it
might linearly interpolate the values at the vertices of the cell. Lovejoy (1991)
developed an early fixed-resolution grid scheme; since then a variety of variable-
resolution schemes have been proposed (Brafman, 1997; Zhou and Hansen, 2001).

Wang et al. (2006) represented a convex upper bound approximation to V* us-
ing the maximum of a bounded number of quadratic surfaces rather than o vectors;
the use of quadratics allowed additional freedom and a more compact representa-
tion, but also made approximate Bellman updates much more time-consuming.

2.9.5 Heuristic Search

Heuristic search played a role in many of the POMDP solution algorithms already
discussed; this section is specifically concerned with heuristic search techniques
for selecting POMDP beliefs to update.

The first example of this technique is the RTDP-BEL algorithm (Geffner and
Bonet, 1998), based on the Real-Time Dynamic Programming (RTDP) algorithm
for MDPs (Barto et al., 1995). RTDP selects states to update using a series of trials.
Each trial starts at the initial state so and explores forward, selecting actions greed-
ily and simulating the transition dynamics to draw successor states stochastically
until a goal state is reached. RTDP can be seen as a generalization of earlier search
techniques like A* (Hart et al., 1968) and Learning Real-Time A* (Korf, 1990).
RTDP-BEL is a straightforward extension of RTDP to POMDPs represented as
belief-MDPs, using a grid-based value function approximation.

The same authors later developed improved algorithms to address some of
RTDP’s limitations. Labeled RTDP labels states once it knows from tracking resid-
uals that they have approximately optimal values; labeled states can be skipped in
later trials (Bonet and Geffner, 2003b). The Heuristic Dynamic Programming al-
gorithm also labels finished states, but often more efficiently, and it fits better into
a broad framework of find-and-revise algorithms that applies across many types of

55

2. Probabilistic Planning Background

problems (Bonet and Geffner, 2003a). Bonet and Geffner applied these algorithms
only to MDPs, but they can be generalized to POMDPs in the same fashion as
RTDP.

The Bounded RTDP (BRTDP) algorithm (McMahan et al., 2005) is another
MDP heuristic search algorithm based on RTDP. Much like our HSVI algorithm
(Smith and Simmons, 2004), BRTDP builds two value functions that bound V*
above and below, and prioritizes updates to states where the interval between the
bounds is large. We regret not adding BRTDP to our performance comparison, due
to a misunderstanding on our part that led us to think it would be difficult to apply
to POMDPs. This comparison should be performed in future work.

More recently, Shani et al. have modified a number of point-based value itera-
tion algorithms to use prioritized asynchronous updates similar to our HSVI algo-
rithm (Smith and Simmons, 2004), and have developed several novel heuristics for
selecting good belief points (Shani et al., 2006, 2007; Virin et al., 2007).

2.9.6 Structured Approaches

Most POMDP solution approaches that depend on the model representation as-
sume that (1) the representation is chosen in advance by a domain expert, and (2)
special structure is not specified a priori, but must be discovered from the transi-
tion dynamics. However, there is a growing body of solution techniques that rely
on explicit additional structure to increase planning efficiency.

Theocharous (2002) developed a hierarchical POMDP (HPOMDP) formula-
tion based on hierarchical hidden Markov models (Fine et al., 1998), and related
to similar approaches for MDPs (Dietterich, 2000; Andre and Russell, 2002). The
HPOMDP structure enables a bottom-up planning process in which macro actions
are built to solve subtasks (such as navigating from one end of a hallway to the
other) and the overall policy decides which macros to apply based on high-level
state information. HPOMDP planning was successfully applied to a robot naviga-
tion task.

The Policy-Contingent Abstraction (PolCA+) algorithm for POMDPs (Pineau,
2004) assumes that a task hierarchy is specified and uses it to automatically aggre-
gate states and observations at various levels of the hierarchy. A hierarchical policy
is built bottom up. Pineau notes that, in the absence of perfect state information, it
is unreliable to base subtask termination on detection that the system has entered
a terminal state. To mitigate this problem, PolCA+ does not use explicit subtask
termination—instead, high-level elements reconsider which subtask should be ac-
tive at every time step.

Hansen and Zhou (2003) propose solving hierarchical POMDPs by generating
policies in the form of hierarchical finite-state controllers (FSCs). The problem

56

2.9. Prior Research on POMDPs

of subtask termination is handled by including a terminal node in each FSC. Their
approach comes with stronger policy optimality guarantees. Recently, Charlin et al.
(2006) suggested a number of non-convex optimization techniques for generating
compact hierarchical FSCs.

Factored models break up state information into distinct state variables. Often
parts of the transition dynamics will depend on only a few of the variables, allow-
ing more efficient reasoning. Boutilier and Dearden (1994) and Boutilier and Poole
(1996) present a notion of factored MDPs and POMDPs in which some variables
are totally irrelevant to the problem and can be abstracted away. Baum and Nichol-
son (1998) suggest non-uniform abstraction for MDPs that varies the level of detail
at different planning horizons.

Some approaches operate directly on a factored POMDP model during the so-
lution process. McAllester and Singh (1999) represent beliefs compactly using
lossy Boyen-Koller belief simplification. St. Aubin et al. (2000) developed an Al-
gebraic Decision Diagram representation for MDPs, extended by Hansen and Feng
(2000) to apply to POMDPs and use a factored observation model.

Givan et al. (2003) present a unifying theoretical framework and useful notation
that encompasses many approaches to state aggregation in MDPs and POMDPs.
Feng and Hansen (2004) propose a version of Incremental Pruning that uses tempo-
rary state aggregation at each update step to reduce the size of the linear programs
used during the pruning process.

Poupart and Boutilier (2003b) present Value-Directed Compression, a linear
compression technique that adds only enough dimensions to (exactly or approxi-
mately) preserve the reward structure of the original problem.

Roy and Gordon (2003) and Roy et al. (2005) used the Exponential-Family
PCA algorithm to perform non-linear compression of POMDP beliefs. This com-
pression strategy sacrifices the PWLC structure of the POMDP value function, but
leads to a much more compact belief space in typical problems where beliefs are
very sparse.

2.9.7 Policy Gradient Approaches

Policy gradient methods search within a continuously parameterized class of poli-
cies, leveraging well-understood gradient search techniques. Policy gradient meth-
ods tend to scale well, as their complexity depends primarily on the complexity of
the policy class rather than that of the POMDP dynamics. However, their effec-
tiveness relies on expert judgment to select a simple policy class containing good
policies (which may not exist, depending on the problem structure), and the meth-
ods can often be trapped by local optima.

57

2. Probabilistic Planning Background

Williams (1992) developed REINFORCE, an early policy search method that
used gradient descent with neural network weights. Baird and Moore (1999) de-
veloped the “value and policy search” (VAPS) framework, which unifies a class of
gradient search algorithms that combine aspects of policy search and value itera-
tion; algorithms that instantiate VAPS have strong convergence guarantees. Baird
and Moore applied VAPS to several types of problems including POMDPs. Baxter
and Bartlett (2000) developed the GPOMDP policy gradient method, which im-
proves REINFORCE in that it requires only a single sample path from a policy to
calculate an approximate gradient and relies on fewer manually tuned parameters.

Meuleau et al. (1999) showed that when a stochastic policy is used and its
parameters are action probabilities and transition probabilities in a policy graph, the
exact policy gradient can be computed efficiently. Kearns et al. (2000) developed
a technique for approximating a POMDP with a deterministic model generated
by sampling a fixed set of “reusable trajectories” in advance. In the deterministic
model exact policy gradients can be computed efficiently and the complexity is
independent of the POMDP transition dynamics. The PEGASUS algorithm (Ng
and Jordan, 2000) simplified the reusable trajectories method and achieved tighter
complexity bounds.

Kakade (2001) showed that gradient search methods can be improved both in
theory and in practice if, in place of the usual policy gradient, one uses a “natural
gradient” that is invariant to certain aspects of the parameterization.

2.9.8 Policy Iteration

Policy iteration methods start with a simple policy and repeatedly refine it using
a two step process of (1) evaluating the long-term reward of the policy, which
generates a value function, and (2) generating a new policy from the value function
(for example, using one-step lookahead). Exact policy iteration is guaranteed to
converge to a global optimum, but (like exact value iteration) quickly becomes
intractable as the size of the policies and value functions grows.

Sondik (1978) developed the first POMDP policy iteration algorithm. The pri-
mary policy representation was a mapping from convex subsets of the belief space
to actions, but for efficient evaluation a secondary finite-state controller (FSC) rep-
resentation was used. However, the conversion between these two representations
is so complicated that Sondik’s algorithm is not used in practice.

Hansen (1998) developed a more practical approach in which an FSC is the
primary policy representation. Hansen’s algorithm finds a global optimum, but
scales poorly due to fast growth in the size of the FSC.

The Bounded Policy Iteration (BPI) algorithm (Poupart and Boutilier, 2003a,
2004) replaces the deterministic FSC of Hansen’s algorithm with a stochastic FSC

58

2.9. Prior Research on POMDPs

of bounded size. BPI monotonically improves the FSC one node at a time, con-
verging to a local optimum. Each refinement step is relatively efficient due to the
bounded size of the FSC. They later combined BPI with Value-Directed Compres-
sion (Poupart and Boutilier, 2004).

2.9.9 History-Based Approaches

MDP policies map states to actions. In order to optimally handle partial observabil-
ity, most POMDP algorithms use policies that map belief distributions to actions,
relying on Bayesian updates during execution to reduce the history of actions and
observations to a single belief distribution. However, for some POMDPs, it is suf-
ficient to condition the action directly on the last few actions and observations,
avoiding the complexity of Bayesian updates.

Loch and Singh (1998) used memoryless stochastic policies, in which the ac-
tion distribution is conditioned only on the most recent observation. They demon-
strated that when good memoryless policies exist they can often be found using the
Sarsa(\) reinforcement learning algorithm with eligibility traces. The eligibility
traces serve as a weak form of memory during policy learning.

The Utile Suffix Memory (USM) approach (McCallum, 1995b,a) uses variable-
length short-term memory. The policy is represented as a decision tree whose root
node variable is the most recent (and thus presumably most relevant) observation,
with earlier actions and observations in the history at increasing depth in the tree.
If the best action can be selected using only recent actions and observations, USM
tends to learn a shallow tree that avoids overfitting.

More recently, Brafman and Shani (2004) improved USM performance in the
presence of noisy sensors. The Noisy USM method uses a sensor model to gener-
ate multiple weighted copies of each sample trajectory, corresponding to different
possible interpretations of noisy observations.

2.9.10 Policy Heuristics

Policy heuristic algorithms use simplifying assumptions to efficiently generate poli-
cies that perform well for some problems but usually have no regret bounds in gen-
eral. These methods can be effective, but selecting an appropriate policy heuristic
for a problem is something of a black art.

A number of heuristics are based on relaxing the assumption of partial observ-
ability, turning the POMDP into a fully observable MDP whose value function can
be computed efficiently. The maximum-likelihood heuristic (Nourbakhsh et al.,
1995) was the first to be developed. They selected the most likely state from the
belief distribution and chose the best action for that state in the fully observable

59

2. Probabilistic Planning Background

MDP model. Simmons and Koenig (1995) proposed a voting heuristic. Each state
was allowed to cast a weighted vote for its best action in the fully observable MDP
model, with weight equal to the state’s likelihood in the belief distribution.

Littman et al. (1995) developed QMDP, probably the most widely used heuris-
tic in this class. QMDP chooses the action with the greatest expected value under
the assumptions that (1) the agent’s belief correctly represents the probability dis-
tribution of the current state, and (2) after selecting an action, the state is revealed
and the system proceeds according to the fully observable MDP dynamics. QMDP
is often used as a baseline against which to measure other policies.

Hauskrecht (2000) showed that some policy heuristics can be interpreted as
one-step lookahead with respect to a value function that is the fixed point of a
modified Bellman update operator. One such update operator produces the MDP
value function used by the QMDP heuristic, which consists of a single « vector.
Hauskrecht developed another update operator that produces the Fast Informed
Bound (FIB), a value function with |.A| « vectors. He showed that the FIB value
function is closer to V* than the MDP value function but can still be computed
efficiently.

Heuristic policies based on the fully observable MDP often underestimate the
value of information gathering. The dual-mode controller developed by Cassandra
et al. (1996) tries to mitigate this problem. It tracks the entropy of the belief dis-
tribution, which is a measure of the agent’s uncertainty. When entropy is low the
controller uses one of the fully observable MDP heuristics; when entropy is high
the controller selects the action that most reduces the expected entropy on the next
time step.

2.9.11 Continuous POMDPs

POMDPs derived from real-world applications often have continuous state, action,
or observation spaces. Policy gradient approaches tend to generalize naturally to
continuous POMDPs, since they are largely independent of how the POMDP tran-
sition dynamics are represented.

On the other hand, most value iteration researchers handle continuous variables
using fixed-resolution discretization, with only a few exceptions. Thrun (2000) de-
veloped MC-POMDP, an early value iteration approach for continuous POMDPs.
MC-POMDP represents a belief as a set of samples and uses particle filter tech-
niques to approximately propagate beliefs through the continuous system dynam-
ics. It performs (Q-learning, representing the () functions with nearest neighbor
approximations.

Porta et al. (2006) showed that the piecewise linear and convex structure fa-
miliar for discrete POMDPs also exists for continuous POMDPs, allowing value

60

2.9. Prior Research on POMDPs

functions to be efficiently represented using “a functions” that take the place of
« vectors. They generalized the PBVI algorithm for discrete POMDPs to handle
continuous state, approximating beliefs with Gaussian mixture models.

2.9.12 Decentralized POMDPs

Recently, there has been growing interest in multi-agent systems. The partially ob-
servable stochastic game (POSG) framework models planning for multiple agents
with different information resources; the agents may or not cooperate with each
other (Hansen et al., 2004). A decentralized POMDP (DEC-POMDP) is a special
type of POSG in which the agents are assumed to be purely cooperative, but still
have limited ability to share information (Bernstein et al., 2002).

Unlike single-agent POMDPs, DEC-POMDPs can be used to decide when
agents should communicate (Roth et al., 2006). Solving general DEC-POMDPs
is known to be intractable, but approximate POMDP solution techniques such as
BPI and PERSEUS have been adapted to the DEC-POMDP framework (Bernstein
et al., 2005; Spaan et al., 2006).

2.9.13 Model Learning

Several of the planning approaches already discussed have a reinforcement learning
flavor such that they can be used either in an offline setting with samples drawn
from an a priori system model or in an online setting with samples drawn from
actual execution.

There are also algorithms that explicitly learn a model and then used model-
based planning techniques. Chrisman (1992) used the Baum-Welch algorithm to
learn a Hidden Markov Model to resolve perceptual aliasing, in parallel with policy
learning. More recently, Shani et al. (2005) made eftective use of the Noisy USM
algorithm to learn a history-based system model and the PERSEUS algorithm to
generate an approximate policy.

Jaulmes et al. (2005) developed the MEDUSA algorithm, which assumes a
class of POMDP models that is continuously parameterized, with a Dirichlet prior
over the parameters. Sampled behavior of the system can be used to efficiently
update the parameter distribution. In order to control the system, MEDUSA keeps
a number of models drawn from the current model distribution, along with near-
optimal policies for those models. At each time step one of the models is selected
stochastically, and the agent acts according to the policy for that model.

The hidden state of a POMDP can lead to problems during learning—for in-
stance, there may be irrelevant degrees of freedom in the model that are uncon-
strained by observations. To mitigate this problem, Littman et al. (2002) devel-

61

2. Probabilistic Planning Background

oped an alternative model formulation called the predictive state representation
(PSR). PSRs replace hidden states with core tests that are directly related to ac-
tion/observation histories. Any POMDP with n states can be represented by a PSR
with at most n core tests. Singh et al. (2003) developed the first learning algorithm
for PSRs; since then, several others have been proposed.

2.9.14 Applications

Most POMDP research papers mention applications of interest, but POMDP plan-
ning technology is still new enough that it has not seen significant integration into
everyday decision processes. Cassandra (1998b) provides an overview of potential
POMDP applications that, while dated, may still be the best survey available. We
focus on a few more recent applications.

Hauskrecht and Fraser (2000) developed a POMDP model of ischemic heart
disease and performed a test in which a POMDP planner recommended treatment
actions for ten actual patients; the actions were critiqued by a physician but not
actually performed. Actions selected by the planner were deemed appropriate in
most cases, and the few mistakes that were made suggested correctible deficiencies
in the model.

When a robot interacts with a person important aspects of state, such as the per-
son’s current goals, are not observable from moment to moment. The Nursebot so-
cial robot, designed for companionship in an elder care facility, used POMDP plan-
ning to manage human-robot dialogs, and later for motion control while searching
for a person (Roy et al., 2000, 2003).

Hoey et al. (2007) developed a system for assisting persons with dementia with
handwashing. Their system observes handwashing progress with a camera that
covers the sink area. If the subject is having difficulty with the task, the system
can respond with increasing levels of intervention, first prompting the subject, then
notifying a human caregiver if necessary. The POMDP model includes attitude fea-
tures such as the subject’s overall dementia level and responsiveness to prompting.
Their system performed well in simulation and with actors.

Hsiao et al. (2007) developed a POMDP planner for robotic grasping tasks
in which the robot is uncertain about the shape and relative pose of the object
to be grasped. The robot can improve its state estimate by touching the object
at different points; POMDP planning makes effective use of these information-
gathering actions.

Ferguson et al. (2004) developed a path planner for large environments with
a few “pinch points” that may or may not be blocked. They introduced a special
subclass of POMDPs called deterministic problems with hidden state (DPHS), and
showed that their path planning problem fell into this class, allowing it to be solved

62

2.9. Prior Research on POMDPs

much more efficiently than a general POMDP.

63

2. Probabilistic Planning Background

64

Chapter 3

Focused Value Iteration

Value iteration is a powerful technique for generating good MDP and POMDP
policies, but it is intractable for some problems. In particular, we have seen that for
belief-MDPs the number of « vectors in the exact representation of V" can grow
doubly exponentially in h.

In this chapter we define a class of focused value iteration algorithms that mit-
igate some of the problems encountered by basic value iteration. Focused value
iteration algorithms make use of the following ideas:

1. Value function guarantees: By choosing appropriate value function repre-
sentations, we can maintain upper and lower bounds on the optimal value
function VZ and make policy quality guarantees without needing to calcu-
late residuals.

2. Point-based updates: In place of the global exact Bellman update operator,
we use point-based updates that typically improve the value function only
over a small part of the state space. More of these point-based updates are
required, but they are much cheaper to compute.

3. Heuristic search: We can use value bounds and other information to heuristi-
cally guide search, focusing on the best places to apply point-based updates.
Significant speedups can be achieved by ignoring irrelevant parts of the state
space.

The correctness of focused value iteration is based on the uniform improvabil-
ity of the bounds (Zhang and Zhang, 2001). We define the notion of a “conservative
incremental representation”, which is a value function representation and associ-
ated rules for initialization and point-based updates that together ensure the value
function is always uniformly improvable. We prove that when focused value it-
eration uses a conservative incremental representation: (1) individual point-based

65

3. Focused Value Iteration

updates can not make the bounds looser, and (2) the output policy satisfies a key

correctness property that bounds the regret. These properties apply across both

MDPs and POMDPs and are independent of how the heuristic search is conducted.
Throughout this chapter we assume that:

e The context is a discounted infinite-horizon MDP. We use the convention
Vr=VZ.

e The state space may be discrete (a finite MDP) or continuous (the belief-
MDP representation of a POMDP). Throughout the discussion, one can re-
place MDP states s with POMDP beliefs b and the MDP state space S with
the POMDP belief space B.

3.1 Value Function Representations and Update Opera-
tors

This section formalizes what we mean by a value function representation and an
update operator, and introduces some properties we would like value functions to
have.

Definition 3.1. A value function representation is a tuple (V, evaluate), where V is
a set of data structures and evaluate : V x S — R is an evaluation rule. For any
data structure V. € V and state s, evaluate(V, s) gives the value at s. When the
evaluation rule is obvious in context, we treat the data structure V' and the value
function it represents as interchangeable, and write evaluate(V, s) as V (s).

Definition 3.2. For two functions V, V', we say V dominates V', written V. > V",
if forall s, V(s) > V'(s). The < and = relations are defined in a similar way.

Definition 3.3. A valid lower bound is a value function V satisfying V< V*. A
valid upper bound satisfies V> V*.

Focused value iteration keeps two-sided bounds on the optimal value function
V*. In order for these data structures to sensibly be called “bounds”, they must at
a minimum be valid. Of course, we would also like them to approximate V'* as
closely as possible.

Definition 3.4. An update operator is a mapping K : V — V.

Definition 3.5. An update operator K is isotone if V- < V' implies KV < KV'.

66

3.2. Using Uniform Improvability to Bound Regret

Definition 3.6. A uniformly improvable lower bound is a value function V satis-
fing HV > V. (In other words, applying H pushes the lower bound everywhere
towards V'*.) Similarly, a uniformly improvable upper bound satisfies HV < V.!

One can show that uniformly improvable bounds are always valid. We will
use uniform improvability to establish that the two-sided bounds on V* improve
monotonically throughout the course of focused value iteration—they remain valid
and never become looser as the algorithm progresses.

3.2 Using Uniform Improvability to Bound Regret

To better understand uniform improvability and the Bellman update we need some
concepts and results from fixed point theory.

Definition 3.7. A Banach space is a complete normed vector space.
Example Banach spaces include:

1. For any finite set F, let X be the space of real-valued functions £ — R,
measuring the distance between functions using any (discrete) £P norm. X
is a Banach space. In particular, the space of value functions for a finite
discrete MDP is a Banach space, since the value function domain is the finite
state space.

2. For any finite dimensionality & and any closed subset £ C R¥, let X be the
space of real-valued functions £ — R, using any (continuous) £P norm. X
is a Banach space. In particular, the space of value functions for a belief-
MDP is a Banach space, since the value function domain is the belief sim-
plex, which is a closed subset of RIS!.

Definition 3.8. Let (X, |-||) be a normed vector space. An operator K : X — X
is a contraction mapping with contraction factor & < 1 if for any x,y € X

| K2 — Ky| < &fe—yl. 3.1)

In particular, one can verify that for discounted MDPs, H is a contraction map-
ping with contraction factor -y over the space of value functions with respect to the
max-norm |-| . This holds for both the discrete MDP and belief-MDP cases.

Definition 3.9. A complete lattice is a partially ordered set (L, <) with well-
defined infimum and supremum operations that apply to subsets of L.

!Zhang and Zhang (2001) introduced the concept of uniform improvability and proved some of
its key properties. They defined uniform improvability only for lower bounds.

67

3. Focused Value Iteration

Of particular interest to us, the set of all real-valued value functions with the
pointwise < operator constitutes a complete lattice, provided that the function
range is extended to allow the infimum and supremum functions to take on val-
ues of —oo and +o0.

Definition 3.10. For any policy m and value function V, define m @ V to be the
expected value of following m for one step of execution, then receiving long-term
reward according to V.. That is, if V! = w @ V, then

V'(s) = (@ V)(s) := R(s,m(s)) + Z T(s,7m(s),s)V(s). (3.2)

In this context we can also use the notation “a” to refer to the policy that always
chooses action a, so that

(a®@V)(s):= R(s,a) + 'yz T(s,a,s)V(s). (3.3)

S

Note that a more common alternative notation for (a ® V')(s) is Q¥ (s, a). We find
the ® notation to be more flexible and convenient.

Lemma 3.11. For any value function V, we have HV = PV @ V.

Proof. Intuitively, this result holds because H corrects the value function using
one-step lookahead, and P is the one-step lookahead operator. One can verify it by
comparing the definitions of P, H, and ®, equations (2.8), (2.9), and (3.2).]

Lemma 3.12. For any policy w, we have Jm = 7 ® J.

Proof. The left-hand side of the equality is the expected long-term reward from
executing 7 at every time step. The right-hand side is the expected reward from
executing m at the first time step, then receiving the expected reward of executing
« for all remaining time steps. Obviously, these quantities are equal.

One can reach the same result algebraically by comparing equations (2.3) and
(3.2). O

Theorem 3.13 (Banach fixed point theorem (Granas and Dugundji, 2003)). Let
X be a Banach space and let K be a contraction mapping on X. Then K has a
unique fixed point x* € X.

Theorem 3.14 (Tarski’s fixed point theorem (Tarski, 1955)). Let (L, <) be a com-
plete lattice and let K : L — L be isotone. Then the set of fixed points of K in L
is also a complete lattice. As a result, K has a least fixed point v and a greatest
fixed point v. Furthermore, forall x € L, v < Kx implies x < v.

68

3.2. Using Uniform Improvability to Bound Regret

We are now ready to present some basic theory on bounding regret using uni-
form improvability.

Theorem 3.15. A uniformly improvable value function is a valid bound. If V¥ is
a value function satisfying V¥ < HVL, then VI < V*. Similarly, HVY < VU
implies V* < VY.

Proof. We have
(P1) H is isotone.
P2) VI < HVE

(P3) H has a unique fixed point because it is a contraction mapping under the
assumption vy < 1.

(P4) V* is the greatest fixed point of H, since it is the unique fixed point.

Applying Tarski’s fixed point theorem, (P1), (P2), and (P4) imply that V1 < V*,
There is a symmetrical argument for V'V O

Theorem 3.16. If V'* is a uniformly improvable lower bound, then V' < JPV'E,
In other words, the policy PV induced by one-step lookahead with V'* achieves
at least the expected value specified by V.

Remark 3.17. Compare with Hauskrecht (2000) (Theorems 10 and 14), which
establishes a similar result for specific classes of belief-MDP value functions, such
as those derived from finite state controllers and from point-based updates to the
max-planes representation.

Proof. Let VL be a uniformly improvable lower bound. Let K be the mapping
X — PV©L ® X. We have:

(P1) HVL = PVl @ VI = KVL, from Lemma 3.11 and the definition of K.
(P2) VE < KV, from (P1) and the uniform improvability of V7.
(P3) K isisotone (this is straightforward to show).

(P4) K has a unique fixed point because it is a contraction mapping under the
assumption v < 1.

(P5) JPVL =PVl @ JPVE = KJPVE, from Lemma 3.12 and the definition
of K.

69

3. Focused Value Iteration

(P6) JPVL is the greatest fixed point of K since it is the unique fixed point,
which follows from (P4) and (P5).

Applying Tarski’s fixed point theorem, (P2), (P3), and (P6) imply that vE <
JPVL. O

Theorem 3.18. If VI < V* < VY and V¥ is uniformly improvable, then the
regret from executing PV'" satisfies

regret(PVL) < VY (s0) — VE(sp). (3.4)
Proof.
regret(PVE) < V*(sg) — JPVE(sp) [definition of regret] (3.5)
< VY(sg) — JPVE(s0) V< VY] (3.6)
< VY(s0) — VE(s0). [Theorem 3.16] (3.7)
O

These theorems show that if we can generate uniformly improvable bounds
VI < v* < VU with a tight bounds interval at the initial state sq, the policy PV
is guaranteed to have small regret.

We are not aware of any statements of Theorems 3.15, 3.16, and 3.18 predat-
ing our work in Smith and Simmons (2004), although these results are relatively
straightforward applications of Tarski’s fixed point theorem.

3.3 Generating Uniformly Improvable Bounds

There are a number of existing techniques for generating valid bounds on V'*;
Hauskrecht (2000) provides a detailed discussion and specific algorithms for
POMDPs, with proofs of validity. This section generalizes some of those results,
showing that:

e Several existing algorithms conform to just two algorithm schemas, simpli-
fying analysis.

e The resulting bounds are not just valid, but also uniformly improvable (mak-
ing them suitable for focused value iteration).

e The same concepts apply across both finite MDPs and POMDPs.

70

3.3. Generating Uniformly Improvable Bounds

The specific bound initialization techniques we use for POMDPs are discussed in
Chapter 4.

Theorem 3.19. For any policy m, the value function Jw is uniformly improvable
(and hence valid).

Proof. Let a policy 7 be given. We need to show that H J7w > Jm. We have

Hir=PJr®Jr [definition of H] (3.8)
>aRJr [in general, PV = arg max(m ® V)] (3.9

= Jr. [Lemma 3.12] (3.10)

O

Theorem 3.19 suggests a simple algorithm schema called policy search lower
bound initialization: perform some form of policy search and evaluate the best
policy you find. The resulting value function is a uniformly improvable lower
bound. The blind policy and UMDP methods for generating POMDP lower bounds
conform to this schema (Hauskrecht, 1997, 2000).

Theorem 3.20. Let K be an update operator such that for any value function V,
KV > HV. If VY is a fixed point of K, then VU is a uniformly improvable upper
bound (and hence a valid upper bound). A symmetrical result holds for lower
bounds.

Proof. Choose K and V'V according to the conditions of the theorem. We need to
show that HVY < VU, We have

HVY < KvY [definition of K] (3.11)
=vY. [V is a fixed point of K] (3.12)
O

This result underlies a corresponding schema for the upper bound called opti-
mistic value iteration upper bound initialization: find an update operator K whose
result is always larger than H and calculate its fixed point. The “optimistic” oper-
ator K is often derived by relaxing the problem in some way. The MDP, QMDP,
and Fast Informed Bound methods for generating POMDP upper bounds conform
to this schema (Hauskrecht, 2000).

71

3. Focused Value Iteration

3.4 Point-Based Updates

Focused value iteration is based on the insight that calculating the exact global
Bellman update H is often intractable. This motivates our interest in related update
operators that are cheaper to compute.

Definition 3.21. A point-based update operator is a mapping K : § —V — V.
For any state s and value function V, K,V is the updated value function that
results from applying K to V at state s.?

We are interested in point-based update operators that can be used to locally
improve the value function. Updating a value function V' at a state s typically
modifies V' so that it is a better approximation to V* at s and possibly in a neigh-
borhood around s, while leaving V' unchanged over most of the state space.

Definition 3.22. The single-point Bellman update is the point-based update oper-
ator HSP such that

HV(s) s=4

. (3.13)
V(s) otherwise.

HPV (s) = {

The single-point Bellman update H5P is perhaps the simplest example of a
useful point-based update operator. Rather than applying the Bellman update H to
the whole value function, it modifies the value only at a single state s. In Chapter 4,
HP is used as the update operator in implementations of focused value iteration
for finite MDPs and POMDPs. In this section, we use H5F as a baseline to compare
with other point-based update operators.

Definition 3.23. If K and L are two update operators, we say that K dominates L
for lower bounds if for all uniformly improvable lower bounds V, KV > LV. (In
other words, between K and L, K pushes the result further in the direction of V*.)
Similarly, K dominates L for upper bounds if for all uniformly improvable upper
bounds V, KV < LV.

Intuitively, between two update operators K and L, we prefer the one that pro-
vides more improvement each time it is applied. The dominance relation between
operators is one way to formalize that idea. As long as the result is valid, we prefer
larger values for lower bounds and smaller values for upper bounds, in both cases

*In the POMDP literature, the term “point-based update” often refers to a specific type of update
to the max-planes representation (Pineau et al., 2006; Spaan and Vlassis, 2005). Our definition is
compatible but more general.

72

3.4. Point-Based Updates

bringing the result closer to V*. Note that the dominance relationship is quanti-
fied over uniformly improvable value functions only; this weakens the conditions
needed to apply later theorems.

Definition 3.24. An update operator K is conservative for lower (upper) bounds
1. K is dominated by H for lower (upper) bounds.

2. K dominates the identity operator for lower (upper) bounds.

A point-based update operator K is conservative if Ky is conservative for every
state s.

A conservative update operator is one that neither “overshoots” the global Bell-
man update H nor weakens the bound. We will show later that conservative update
operators preserve uniform improvability (and hence validity) of the bounds.

Definition 3.25. A point-based update operator K is strong for lower (upper)
bounds if:

1. K is dominated by H for lower (upper) bounds.
2. K dominates H5 for lower (upper) bounds.
(Note that a strong operator is always a conservative operator.)

The fact that an update operator is conservative essentially provides a correct-
ness guarantee, but does not imply that the operator does anything useful. For
example, the identity operator is conservative. On the other hand, a strong operator
must provide at least as much improvement as the single-point Bellman update.
In Chapter 6, we will use this property to guarantee termination of focused value
iteration when certain heuristic search algorithms are used.

Definition 3.26. An incremental representation is a tuple (V,evaluate, V), K),
where (V, evaluate) is a value function representation, Vo € V is a uniformly
improvable initial value function, and K is a point-based update operator.

Definition 3.27. An incremental representation is conservative (strong) if its point-
based update operator K is conservative (strong).

We are now ready to explore the relationship between uniform improvability
and various update operators. Zhang and Zhang (2001) proved an important basic
result.

73

3. Focused Value Iteration

Theorem 3.28. (Zhang and Zhang, 2001). The Bellman update operator H pre-
serves uniform improvability.

We can trivially generalize this result to all conservative update operators.
Theorem 3.29. Conservative update operators preserve uniform improvability.

Proof. Let K be a conservative update operator for lower bounds and V' be a
uniformly improvable lower bound. Then

KVt <H v [definition of conservative update] (3.14)
<HKVYT. [Vl < KV% and H is isotone] (3.15)

KVY < HKV' means KV* is a uniformly improvable lower bound. There is a
symmetrical argument for upper bounds. O

3.5 The Focused Value Iteration Algorithm

Focused value iteration describes a class of value iteration algorithms that make use
of value function guarantees, focused updates, and heuristic search. This section
presents an algorithm for focused value iteration that can be used with a variety
of modules implementing point-based updates and heuristic search, as long as the
modules conform to the type signatures we specify. Furthermore, when used with
conservative incremental representations for the bounds, focused value iteration is
sound in the sense that, if it terminates, it is guaranteed to return a policy whose
regret is within the specified bound.

Algorithm 3.1 defines INCREMENTALSIG, a type signature for modules imple-
menting incremental representations. The declarations in the signature correspond
directly to elements of the tuple (), evaluate, Vj, K) in the definition of an incre-
mental representation. The initial value function Vj is computed using a call to
initialValueFunction, which takes no arguments. The update operator K
is implemented via the update function, with arguments ordered differently for
notational convenience.

Algorithm 3.2 defines SEARCHSIG, the type signature for modules implement-
ing heuristic search. Focused value iteration relies on a heuristic search module to
select states for point-based updates. A heuristic search implementation needs a
way to initialize its internal state and a way to choose the next point to update
based on the current bounds and its internal state.

Finally, Algorithm 3.3 defines focused value iteration. The core algorithm is
simple, as the modules take care of most of the details. In outline, focused value it-
eration (1) initializes its lower and upper bound representations and heuristic search

74

3.5. The Focused Value Iteration Algorithm

Algorithm 3.1 INCREMENTALSIG, a type signature for incremental representation
implementations.

1: type V [the value function representation]
2: function evaluate: V x § — R

3: function initialValueFunction: () — V

4: function update: V x S — V

Algorithm 3.2 SEARCHSIG, a type signature for heuristic search implementations.

uses implementation <LLB> conforming to INCREMENTALSIG

uses implementation <UB> conforming to INCREMENTALSIG

type X [the internal state of the search algorithm]

function initialSearchState: () — X

function chooseUpdatePoint: (<LB>.V x <UB>.V x X) — (S x X))

AN

state, (2) repeatedly applies point-based updates at points selected by the heuristic
search, and (3) returns the lower bound V* when the regret from executing PV *
is guaranteed to be smaller than §.

The following theorem provides a soundness guarantee for focused value iter-
ation when used with conservative incremental representations.

Theorem 3.30. Let <LLB> and <UB> be conservative incremental representa-
tions for lower and upper bound functions, respectively. Then, if focused value iter-
ation terminates, it returns a lower bound function V'* such that regret(PV*) <

J.

Proof. Focused value iteration maintains the invariant that the bounds V% and VU
are uniformly improvable, because

1. They are initialized via a conservative incremental representation; hence they
are initially uniformly improvable.

2. They continue to be uniformly improvable after applications of K by Theo-
rem 3.29.

Making use of the uniform improvability, if focusedValueIteration termi-
nates, we have

regret(PVE) < VY (sg) — VL(sy) [Theorem 3.18] (3.16)
<. [termination condition, line 10] (3.17)

75

3. Focused Value Iteration

Algorithm 3.3 Focused value iteration.

1: uses implementation <L B> conforming to INCREMENTALSIG
2: uses implementation <UB> conforming to INCREMENTALSIG
3: uses implementation <SEARCH> conforming to SEARCHSIG
4:

5: function focusedValuelteration(9) :

6: [returns a value function V% such that regret(PV’) < §]

7. x « <SEARCH>.initialSearchState()

8: VI «— <LB>.initialValueFunction()

9: VY «— <UB>.initialValueFunction()

10: while (VY (sg) — VE(sg)) > 6

11: S, T — <SEARCH>.chooseUpdatePoint(VL, VU x)

12: VI — <LB>.update(VE, s)

13: VU «— <UB>.update(VV, s)

14: return VI

15:

16: function chooseAction(VL, s):
17: [used to select actions during policy execution]
18: return argmax, [R(s,a) +~ Y., T(s,a,s)VE(s)]

O]

Later we show that with a strong incremental representation and an appropriate
heuristic search implementation, focused value iteration is guaranteed to terminate.
Heuristic search is covered in detail in Chapter 6.

76

Chapter 4

POMDP Value Function
Representation

The efficiency of focused value iteration strongly depends on how the value func-
tion bounds V% and V'V are represented. This chapter presents a number of novel
value function representations and relates them to representations from prior re-
search in a broader overall framework.!

The chapter has two unifying themes. First, all of the representations we
present are strong incremental representations; they come associated with algo-
rithms to (1) generate initial uniformly improvable bounds, and (2) efficiently per-
form point-based updates in a way that preserves uniform improvability. This is
the thread that ties the representations back to the focused value iteration sound-
ness theorem from the preceding chapter.

Second, we will repeatedly see a trade-off between fast point-based updates
and strong generalization. We informally say that a representation has strong gen-
eralization if a point-based update at a belief b tends to improve the value function
not only at b but also at other related beliefs &’. Our various representations fall
at different points on the spectrum between fast updates and strong generalization.
Experiments indicate that, at least for some benchmark problems, a compromise
approach provides best performance.

!Software implementations of most of the value function representations described in this
chapter are freely available as part of the ZMDP software package, which you can download at
http://www.cs.cmu.edu/ trey/zmdp/.

77

4. POMDP Value Function Representation

4.1 Linear Algebra Notation

Earlier sections presented many calculations that can be interpreted in terms of
matrix multiplication, vector addition, and inner products. In order to facilitate
later discussions of data structure representation, this section introduces notation
that makes the connections to linear algebra operations more explicit.

Recall the M ?° linear mapping defined by equation (2.51), §2.8:

(M?*b)(s") :==Pr(s',0| b,a) ZO a,s’,0)T(s,a,s)b(s). 4.1)

The following formula reduces application of M “° to realizable linear operations
and explicit use of stored parameters from the POMDP model:

M = % x (T"), (4.2)

where the terms on the right-hand side are defined such that

w?(s') :=0(a,s’,0) [w* is alength-|S| vector] (4.3)
(zxy)(s") == 2(s)y(s) [* “entry-wise multiplies” two vectors] (4.4)
Tsa’s = T($7 a, 3/)- [T is an ‘S’ X |S’ matrix] 4.5)

Furthermore, in the process of calculating the Bellman update, given a vector
«, one often needs to calculate a vector 3 such that for every belief b,

BTb = T (M*D). (4.6)
Solving for (3 gives

,3 _ MaoTa — TaT(wao " Oé). (47)
Finally, we can explicitly recognize the formula
B=R(a) +72M“0Ta0 (4.8)
o

as taking the sum of vectors, defining the vectors r® such that for all s,

r(s) = R(s,a) 4.9)

78

4.2. Constructing Uniformly Improvable Bounds

Algorithm 4.1 Blind policy lower bound initialization (Hauskrecht, 1997).

1: function blindPolicyInitialize() :

22 forac A:

3: [policy evaluation for the policy of always taking action a]
4 a® «— solvefora: [a = a® a]

5. return {o!, ... oM}

4.2 Constructing Uniformly Improvable Bounds

This section builds on the basic results in §3.3 to discuss specific methods for
initializing the bounds used by focused value iteration.

4.2.1 Lower Bound Initialization: The Blind Policy Method

In §3.3 we presented an algorithm schema called policy search lower bound initial-
ization. Algorithms conforming to the schema perform some form of policy search
and evaluate the best policy found. The resulting value function is guaranteed to
be uniformly improvable.

The Blind Policy Method (Hauskrecht, 1997) is an instance of this schema. The
blind policy of always selecting a particular action a has a linear value function o®
that is relatively easy to calculate. Having calculated all the o® planes, the agent
can construct the following meta-policy:

1. Atthe initial step of execution starting from belief by, choose the blind policy
whose plane a® maximizes o’ by.

2. Throughout execution, always select action a.

It is easy to see that the value function for the meta-policy is the point-wise maxi-
mum of the individual blind policies:

yolind . — max Pnd .— max{al,. .. ,oz'A‘}. (4.10)

Applying Theorem 3.19, the value function V°!i"d is a uniformly improvable
lower bound, since it is the value function for the meta-policy. Algorithm 4.1 is
an implementation of the blind policy method that returns the corresponding max-
planes representation I"°1ind,

Note that each a“ is the solution to the equation

a*=a®a, 4.11)

79

4. POMDP Value Function Representation

which reduces to the linear system
a® =r® AT (4.12)

We can solve the linear system in at worst O(|S|?) time using Gaussian elimina-
tion, or we may be able to do better with more sophisticated techniques. Since |.A]
planes must be calculated the overall running time of the blind policy method is at
worst O(|A||S?).

The class of blind policies is particularly useful for policy search lower bound
initialization because:

1. All POMDPs have blind policies.

2. The value function of a blind policy is easy to compute and linear, so the
blind policy method generates a max-planes representation.

3. The class contains only |4 policies, so it is easy to evaluate all of them.

However, it should be noted that for many problems all of the blind policies have
poor performance, which means that the resulting value function V°i"d provides a
weak lower bound, slowing down the overall focused value iteration algorithm. In
those cases, one may wish to use a policy class tailored to the particular problem
as a way of injecting domain knowledge and speeding up the solution process.

4.2.2 Upper Bound Initialization: The Fast Informed Bound Method

In §3.3 we presented an algorithm schema called optimistic value iteration upper
bound initialization. Algorithms conforming to the schema perform value iteration
with an update operator K that is “optimistic” in the sense that its result always
pointwise dominates that of the true Bellman update H. Any fixed point of K is
guaranteed to be uniformly improvable.

Hauskrecht (2000) showed that the operators HMPP and H''® defined below
are optimistic, and that their fixed points are valid upper bounds. Theorem 3.20
implies that they are also uniformly improvable.

Definition 4.1 (See, for example, Hauskrecht (2000)). Define the MDP update
operator according to

(HMPPV) (b) ::Zb(s)mgx R(s,a) + 7Y _T(s,a,8)V(s')|. (413)

S/

(4.14)

80

4.2. Constructing Uniformly Improvable Bounds

Algorithm 4.2 Fast informed bound upper bound initialization (Hauskrecht, 2000).

1: function fastinformedBoundInitialize(d) :

2 [returns a d-approximation of the fixed point of HB]

3 aMPP the optimal value function of the underlying MDP
4. foraec A:

5 a® « MDP

6 loop:

7 fora c A:

8 foroec O:

9: forsc S:
10: B(s) « maX a1 qlaly 2oy T'(s:a,8)0(a, 8, 0)a(s')
11: Ba — Ta+,}/20l8ao
12: € «— maXgg, |0%(s) — a®(s)]
13: fora e A:
14: a — [
15: ife/(1—7v)<d:
16: return {a',..., oM}

Definition 4.2 (Hauskrecht (2000)). Define the Fast Informed Bound (FIB) update
operator according to

FIB ,_ aoT
(H™PV)(b) := mgxzsj b(s) | R(s,a)+ vzozrélglch al . (4.15)
The fast informed bound method generates a uniformly improvable upper bound
by calculating the fixed point VB of the operator H¥'B. Hauskrecht proposed an
approach for exactly calculating V' based on the observation that it is equal to
the optimal value function of a certain MDP with |.A||O||S]| states. This MDP can
be constructed and solved with computation time polynomial in |A||O||S].
Our implementation uses a simple iterative approach to calculate an approxi-
mation to VB, Algorithm 4.2 returns an approximation V such that

[V = Vo < 6. (4.16)

Each iteration of the main loop in the implementation applies the H'® operator
once to the current value function. When the residual between successive loops is
sufficiently small, the max-planes representation of the value function is returned.

Note that on line 5 we initialize each a vector with the optimal value function

81

4. POMDP Value Function Representation

VMDP of the underlying MDP. This does not affect the final result since iteration

of HF® is globally convergent, but it often happens that VMPP ~ VFIB gspeeding
convergence. As with the overall algorithm, one can solve exactly for the MDP
optimal value function in polynomial time using linear programming or use an
approximate iterative approach such as MDP value iteration.

The computation time of Algorithm 4.2 is dominated by the inner loop at line
10, which takes O(].A|?|0||S|?) time per loop. The contraction factor of 7 in
H'B provides first-order convergence and makes it possible to bound the number
of loops required to reach a specific error d, but we will not provide a detailed
analysis. In practice we find this iterative approach is both easy to implement and
efficient enough that running it to “completion” near machine precision is a small
time investment relative to later steps in focused value iteration.

4.3 Adding Planes to the Max-Planes Representation

Most existing point-based value iteration algorithms use the max-planes represen-
tation and generate a new « vector for a belief point b by in effect calculating the
gradient of HV at b. A set of these o vectors may be calculated in batch (Spaan
and Vlassis, 2005; Pineau et al., 2006) or asynchronously (Hauskrecht, 2000).
This section presents a strong incremental representation called ADDPLANE
that formalizes the asynchronous approach. ADDPLANE is defined as follows:

e A value function is represented using a set I' of o vectors.

e The evaluation semantics are defined by the operator JAP, which takes the
point-wise maximum of the vectors in I'.

e The initial uniformly improvable bound I'g is generated using the blind pol-
icy method.

e The ADDPLANE point-based update operator, HAF, adds one vector to I in
the manner we describe below.

Now we provide more detail. .JAP takes the point-wise maximum of the vectors
inI"

JAT .= maxT, 4.17)
in other words
JAPT(b) = max aTb. (4.18)
acl

82

4.3. Adding Planes to the Max-Planes Representation

Algorithm 4.3 ADDPLANE, an incremental representation.

: function ADDPLANE.evaluate(I', b) :
return max,ecr aTh

1
2
3:
4: function ADDPLANE.initial ValueFunction() :
5: return blindPolicylInitialize()
6
7
8
9

: function ADDPLANE.update(T',) :

forac A:
foroc O:
10: b — W x (TD)
11: 8% «— argmaxaer ol b
12: ﬁa « ro 4 v ZO TaT(wao * ﬂao)

13: (% «— argmaxﬁe{517.__7ﬁ\A\}ﬂTb
14 return I' U {5*}

The update operator HAP is formally defined as a mapping on max-planes rep-
resentations. It takes a vector set I' and adds a single new « vector as computed
by the update function of Algorithm 4.3. (We provide a more intuitive informal
definition below.)

In general, it is natural to think of an update operator on value function repre-
sentations as an update operator on value functions themselves. Thus we extend
our notation such that, when V = JAPT,

HPPV .= JAPHPPT. (4.19)

Note that H, l‘fP V' is obviously ill-defined when V' is not representable using the
max-planes representation. It is also potentially ill-defined when there are many
possible representations for a particular value function V' (none of which is canon-
ical). Thus we will only use this convention in context when it is obvious how V is
represented. The same shorthand generalizes to other matched pairs of evaluation
and update operators defined later; for example, the J°H and HM operators in
64.6.1.

Similarly, we can think of operators nominally defined on value functions as
operators on value function representations. For example, when V' = JAPT and
HV = JAPT’, we use the extended notation

HT =T, (4.20)

83

4. POMDP Value Function Representation

H"V(b)=8"b=HV(b) B*=argmax,_, & b
all X
vectors B
b
V=maxTI H}"V=max{I',B"} HV=maxHT

Figure 4.1: The relationship between V', H, fPV, and HV.

The same caveats apply concerning existence and canonical representation. We
use this second convention mostly to provide informal intuition.

This leads us to an informal definition of the ADDPLANE point-based update
operator:

HMT =T U {3}, 4.21)
where
* T
= . 4.22
7= e et 422

HAP locally improves V by by adding to I' the o vector from HT that is maximal
at b.2 Figure 4.1 shows this relationship graphically. We see V', H, ?PV, and HV at
left, middle, and right, respectively. H I?PV is constructed by taking the maximum
of (1) all vectors in I', drawn with dashed lines, and (2) the single vector 5* from
HT that maximizes the value of b, drawn with a thin solid line.

It is well known that, using the HAP computation defined by Algorithm 4.3,
the vector 5* that is added to I is a subgradient of HV at b, meaning:

3*Tb = HV(b) (4.23)
5*TH < HV(b') for every belief b'. (4.24)

See, for example, Zhang and Zhang (2001). Based on this understanding we can
prove the following theorem.

Theorem 4.3. HA? is a strong point-based update operator for lower bounds,

>We are glossing over issues of tie-breaking; Littman (1996) includes a detailed discussion.

84

4.4. Leveraging Sparsity with the Max-Planes Representation

making ADDPLANE a strong incremental representation.

Proof. Let V. = JAPT be a uniformly improvable lower bound, let b be a belief,
and let 5* be the vector H, ?P adds to I'. We have:

HPMPY = JAPEAPT [def. of H{*¥ for value functions] (4.25)
= JAP (T U {p*}) [def. of HAY, 5*] (4.26)
= max{JAT, g%} [def. of JAP] (4.27)
> JAPT [def. of max] (4.28)
=V [def. of V] (4.29)

This shows that H. I;*PV dominates V. We also have

HPMPV () > g 7Th [(4.27)] (4.30)
= HV(b). [(4.23)] (4.31)

Together, (4.29) and (4.31) show that H fp dominates the single-point Bellman
update H, bSP. Decomposing the two sides of the max operation in (4.27), we have

JAT =V [def. of V] (4.32)
< HV. [V unif. improvable] (4.33)
5* < HV. [(4.24)] (4.34)

Together, (4.27), (4.33), and (4.34) establish that H, ?P is dominated by H. Since
H fP dominates H5? and is dominated by H for all b, we find that HAP is a strong
point-based update operator. O

4.4 Leveraging Sparsity with the Max-Planes Represen-
tation

POMDP problems often have sparse structure. The initial belief by may be sparse,
meaning that the initial state is known to be drawn from one of only a few possi-
bilities. The transition function 7" may be sparse, meaning that any state has only
a few possible successors. Finally, in some problems these properties combine to
cause persistent sparsity, meaning that transitions tend to retain belief sparsity so
that all reachable beliefs in the POMDP search graph are sparse.

This section discusses three low-level implementations of the ADDPLANE fo-
cused update algorithm. DENSE is the simplest implementation; COMPRESSED

85

4. POMDP Value Function Representation

Per operation Total time spent in line
alv® T T°T3 Line 10 Line 11 Line 12
DENSE [S] |le22 \5!22 !AHOH«g\QQIAHOHFHS\ IAHC’)HSIQ2
Compr. p|S| p°IS[® pISI7 | A|OIp%|SI” |AOI[T]pl S| |A[|O]p]S]
MaskeD p|S| p*IS]? p*|SI* AO1p*ISI* JAIOlpIL|plS]| | Al Olp?ISI?

Table 4.1: Asymptotic time complexity of individual operations for different im-
plementations of ADDPLANE.

and MASKED are alternate versions designed to improve efficiency in the presence
of sparse structure. The implementations differ primarily in terms of how they re-
alize the linear operations at lines 10, 11, and 12 of Algorithm 4.3, which dominate
the running time of the update function.

Table 4.1 collects performance information about the various implementations.
It will be explained in detail as we present each implementation. Our data struc-
ture terminology is drawn from the BLAS linear algebra package (Dongarra et al.,
1988). Time complexity estimates for linear algebra operations are based on widely
available algorithms optimized for these data structures.

Our simplest low-level implementation, called DENSE, uses dense storage mode
for all matrices and vectors. With this representation, inner products like o’ b re-
quire O(|S|) time, and matrix-vector multiplications like 7%b and 7% o require
O(|S|?) time. Line 10 of Algorithm 4.3 is executed O(|.A||O|) times and per-
forms a matrix-vector multiplication at each iteration for an overall running time
of O(JA||O[|S|?). Line 11 is executed O(|.A||O|) times and computes |T'| inner
products at each iteration for an overall running time of O(|.A||O||T'||S]). Line 12
is executed O(].A|) times and performs |O| matrix-vector multiplications at each
iteration for an overall running time of O(].A||O||S|?). These figures are summa-
rized in Table 4.1.

4.4.1 Compressed Data Structures

Our second low-level implementation, called COMPRESSED, straightforwardly uses
sparse data structures to improve update efficiency for sparse problems. To ana-
lyze this implementation we need some quantitative assumptions about persistent
sparsity, namely:

(S1) The fill-in ratio for the T'® matrices is p < 1. In particular, each column of
T has at most p|S| non-zeros.

(S2) The fill-in ratio for reachable beliefs b is also p, meaning each belief has at
most p|S| non-zeros.

86

4.4. Leveraging Sparsity with the Max-Planes Representation

However, it turns out that the assumption of persistent sparsity is not sufficient
to guarantee the sparsity of the « and (3 vectors generated by ADDPLANE. This is
because in the line

B 14> T (W% %), [Line 12 of Algorithm 4.3] (4.35)

the vector r® is not guaranteed to be sparse. In particular, it is common to formulate
POMDPs such that all actions outside a goal state incur a cost, which guarantees
that r* is dense.

Even if r® is sparse, the non-zero entries of the various vectors in the sum are
likely not to be aligned, so that over multiple applications of update the o vectors
become progressively less sparse. Therefore our complexity analysis is based on
the worst-case assumption that « vectors are dense.

To take advantage of whatever sparsity is available, COMPRESSED stores 1
matrices in compressed sparse column (CSC) mode, and beliefs b and vectors v and
/3 in compressed mode. With this representation, inner products like o’ b%° require
O(p|S|) time, and matrix-vector multiplications like 7%b require O(p?|S|?) time.
As a result, matrix-vector multiplications in the form 7%7 3 involve a non-sparse
vector and require O(p|S|?) time. Running times for lines 10-12 are summarized
in Table 4.1.

It should be clear that the DENSE and COMPRESSED implementations gen-
erate equivalent value functions, so COMPRESSED is another strong incremental
representation.

4.4.2 Alpha Vector Masking (Novel Approach)

Our third low-level implementation, called MASKED, is a novel approach that more
thoroughly revises the overall algorithm so that sparse « vectors can be used effec-
tively. The value functions generated by the MASKED are not equivalent to those
generated by DENSE and COMPRESSED.

The key insight of the MASKED approach is that, in problems with persistent
sparsity, most entries of a new dense « vector tend to be irrelevant, so that little
is lost by discarding those entries and retaining a sparse representation, as long as
some steps are taken to ensure that the resulting algorithm still has the properties
of a strong point-based update operator.

Recall that each a vector in the max-planes representation is the value function
of a particular policy tree. In particular, when a new « vector is generated through
a point-based update, it corresponds to a policy tree 7 that is optimized to perform
well if executed starting at belief b. But there is little reason to expect that 7 and «
will perform well for another belief b’ unless it is somehow related to b.

87

4. POMDP Value Function Representation

p(ec, b)

r371 1) r 11 1)

2

0 0.3 1

2 0.4 » 2 1

3 0.3 3 1

3 - - - -
k-(x- -b-) kvalue mask)

Figure 4.2: Converting an « vector to masked form.

To take advantage of this line of reasoning, we can annotate each « vector with
additional information about the belief b that generated it. Then, when looking for
an « vector to maximize o b’ for another belief ¥', we can reject o from consid-
eration if we judge that b and b’ are not closely enough related. The rejection is
justified by the intuition that « is unlikely to be optimal at b’, although this is not
guaranteed to be the case.

In particular, we annotate each a vector with a mask that records which entries
of b are non-zeros, and we consider the inner product a’'b’ only if the non-zeros of
b’ “align with the mask” in the sense that all non-zeros of b’ are also non-zeros in
the mask.

We call the annotated data structure for each o vector the masked represen-
tation, and conversion to the masked representation is denoted with the operator
u. The data structure p(a, b) is composed of two vectors stored in compressed
mode. The first is the binary-valued mask vector, which records which entries of
b are non-zeros. The second is the real-valued value vector, which records only
the non-zero values of « that align with the mask. Figure 4.2 shows an example of
conversion to the masked representation.

To formalize the notion of rejection, we say that a masked vector a supports a
belief b’ if the non-zeros of b’ align with its mask. Likewise, the set of all beliefs
supported by « is called the support of . Note that the support of a masked
vector is always either the whole belief simplex or some hyperface that lies on its
boundary, defined by the intersection of constraints in the form b'(s) = 0. If all
entries in the mask are non-zeros, we say that « is a full-support vector.

After converting to the masked representation, we can determine whether
supports a belief b’ using the mask vector, and if this check is passed we can cal-
culate o'’ using its value vector. Note that if o supports b’ the inner product sum

88

4.4. Leveraging Sparsity with the Max-Planes Representation

Algorithm 4.4 MASKED, an alternate implementation of ADDPLANE.

: function MASKED.evaluate(I', b) :
return max,ecq (1 p) alb

1
2
3:
4: function MASKED.initial ValueFunction() :
5: return blindPolicylInitialize()
6
7
8
9

: function MASKED.update(I', b) :

forac A:
foroc O:
10: b — W x (TD)
11: [« argmaxX,eq (1 pao) alpee
12: ﬂa - M(Ta 4 v Zo TaT(wao * M(/@ao7 bao))’ b)

13: % «— argmaxﬁe{m“”ﬁ\A\}ﬂTb
14 return I'U {3*}

depends only on the non-zeros of « that align with the mask, so we have enough
information to calculate the inner product even though we discarded the rest of the
original « vector.

It is tempting to think that we could check if « supports b’ using the non-
zeros of the value vector as an implicit mask, which would eliminate the need to
explicitly store the mask vector. Unfortunately, that idea breaks down when «
happens to have a zero value that falls within the true mask. In that case, using the
value vector as an implicit mask would paradoxically result in the masked vector
not supporting the very belief b that generated it.

A set of masked vectors can be used to represent a value function in what
we call the masked max-planes representation. Let I' be a set of masked vectors.
Define the support filtering operator o such that

o(I',b) := {a € T' | a supports b}. (4.36)

The JMAP operator defines the evaluation semantics of the MASKED imple-
mentation of ADDPLANE:

JMAPT () .= mex, al'b. (4.37)
aco(l,

The point-based update operator for the MASKED implementation is denoted HMAP,
and defined according to the updat e function in Algorithm 4.4. HMAP essentially

89

4. POMDP Value Function Representation

mask vector has
tWO non-zeros

mask vector has
one non-zero

full-support
vector

Vb)

Y
)

AVava-a .
R

X

s

%
co%0;
QKX

Y,

%
N
<
05

&
-
5T

255
S8
et
S
0
2

AETXRKHKS
ELEIEIE,
LIRSS
VAN

<

X
<%
X5

<>
X X
Q.Q
0.9

<
<

29388
955
LS
Pavae

%5
028
5

LKL
S

K5

b (0)
Figure 4.3: The masked max-planes representation.

generates the same « vector as HAY, but converts it to the masked representation

before adding it to I'.
Figure 4.3 shows an example masked max-planes value function for a three-

state POMDP. Any masked vector generated at a belief in the interior of the belief
simplex supports the entire belief simplex. In the figure these vectors appear as
planes. Any masked vector generated on the boundary of the belief simplex sup-
ports only the lowest-dimensional boundary hyperface that includes the generating
belief. In the figure these vectors appear as lines or points at the edges or corners
of the belief simplex. Note that a masked max-planes value function is guaran-
teed to be convex over the belief simplex, and is even PWLC if one accepts the
low-dimensional masked vectors as “linear pieces”.

Masked vectors do not provide any advantage if the goal is to exactly represent
an optimal value function V}* over the entire belief simplex. The smallest such
exact representation is always composed solely of full-support o vectors. Rather,
masked vectors reduce the memory required to store an approximate representation
in cases where accuracy of the lower bound is more important along particular
boundaries of the belief simplex than in the interior. Unsurprisingly, as we will see
in Chapter 6, accuracy is “more important” in regions of the belief simplex that

contain beliefs likely to be reached by good policies.

90

4.4. Leveraging Sparsity with the Max-Planes Representation

Algorithm 4.4 presents MASKED, a revision of ADDPLANE that makes effi-
cient use of the masked max-planes value function representation. As with the
COMPRESSED low-level implementation, the matrices 7'* and beliefs b are stored
in compressed mode. The vectors « and § use the masked representation.

Conjecture 4.4. HYA? s q strong point-based update operator for lower bounds,

so the MASKED implementation of ADDPLANE is a strong incremental represen-
tation.

Proof sketch. We claim that the original operator H, lf‘P and the masked operator
H })V[AP both add the same vector 5* to I'. The only difference is that the masked
update restricts the support of §* to match the non-zeros of b just before inserting
£* into I'. Restricting the support in this way makes 3* weaker, so overall the
masked update is dominated by the standard point-based update and

V <YV < BV < HV. (4.38)
Since after the restriction 3* is still guaranteed to support b, we also have that
HMAPY (b) = HPMPV (b) = HV (). (4.39)

Together (4.38) and (4.39) imply that H, })V'AP is a strong point-based update.

This argument implicitly assumes that before the update the value function V'
was composed only of full-support vectors; if it included low-dimensional masked
vectors, the result H, ?PV of the standard point-based update would not be well-
defined. A full proof would need to account for that case.

This informal argument is backed by our experience using HMAP to solve
benchmark POMDPs; in practice, it appears to be a strong point-based update op-
erator. O

4.4.3 Masked Vector Performance Analysis

In order to show how MASKED improves performance for highly structured prob-
lems, we base our complexity analysis on some strong additional assumptions:

(S3) We assume that the problem’s persistent sparsity arises because some com-
ponents of the world state are fully observable. Specifically, we assume the
problem state can be decomposed into k£ binary-valued state variables, of
which j are fully observable in the sense that their value is known with cer-
tainty for all reachable beliefs. Under this assumption |S| = 2* and the
problem is persistently sparse with fill-in ratio p = 1/27.

91

4. POMDP Value Function Representation

(54)

This limited assumption of full observability also has the effect of parti-
tioning S into 27 subsets of size p|S|, one subset for each possible joint
assignment to the fully observable variables. For any reachable belief b, all
non-zeros of b fall into a single set of the partition. Therefore all masked
vectors « also have masks that fall into a single subset.

We also assume that the « vectors of I' are distributed more or less evenly
between the subsets in the partition of S, so that at most O(p|I'|) of the «
vectors fall into each subset.

Whether this assumption holds in practice depends on the problem and the
search strategy used to select beliefs for updating. In any case, if the problem
is structured so that there are many relevant assignments to the fully observ-
able variables, it is reasonable to expect that only a small fraction of the «
vectors will fall into any given subset.

Note that we do not depend on (S1)-(S4) for the correctness of MASKED as a
point-based update. These assumptions are used only for the complexity analysis.

The running time of updates using MASKED also depends on the detailed im-
plementation of the support filtering operator ¢ used at Algorithm 4.4, line 11. To
allow efficient filtering, we maintain along with I" an additional data structure, an
array of support lists that is indexed by state. The support list for a given state s
is a list of pointers to the vectors in I' whose masks have a non-zero at s. Stor-
ing the support lists requires O(|I'|p|S|) space, comparable to the space required
for I" itself. Maintaining the support lists as new vectors are generated does not
significantly add to the time overhead.

In order to compute o (I",b) we do the following:

1.

Choose s to be the index of the first non-zero entry in the compressed repre-
sentation of b.

. The first stage of the filter provisionally accepts vectors that are referenced

in the support list for s. These accepted vectors « are exactly the ones that
satisfy a(s) # 0, which is necessary but not sufficient for a supporting
b. Thus there may be some “false positives” in this list, requiring a second
stage of filtering. Assumption (S4) implies that O(p|I'|) vectors pass the first
stage.

. For each remaining vector «, check if a supports b by comparing the non-

zeros of b and the mask for «. This stage of the filter requires O(p|S|) time
per vector, or O(p|I'|p|S|) time overall.

92

4.4. Leveraging Sparsity with the Max-Planes Representation

Update time I" storage space
DENSE [A[O] (ITlIS[+181%) [TIIS]
COMPRESSED |A||O] (|IT||S| +|SI?) p |T||S]
MASKED JAIIO] (ITIIST + 18%) p*_ITIISIp

Table 4.2: Asymptotic complexity of different implementations of ADDPLANE.

Note that, although for convenience we define the filter o as a mapping on
masked vector sets, in practice we never explicitly construct its result set. Instead,
we generate and use the result elements one at a time in lazy fashion.

We should also clarify that our blind policy initialization works with o vectors
in dense storage mode regardless of which low-level implementation we use for
ADDPLANE; if the MASKED implementation is subsequently used, the resulting
dense vectors are converted to full-support masked vectors. The presence of these
full-support vectors in I' ensures that throughout the value iteration process every
belief b is supported by at least one vector. Since there are at most |.4| < |T'| such
full-support vectors, we neglect their impact on the update time.

Using MASKED, inner products like a5 require O(p|S|) time, and matrix-
vector multiplications like 7%b and 77 3 require O(p?|S|?) time. Line 11 is exe-
cuted O(|.A||O|) times. Each time it is executed, the filtering operation o (I", b*°)
requires O(p|T'|p|S|) time, and the inner product a'b%° is computed p|T'| times,
which also requires O(p|T'|p|S|) time. Thus the overall running time for line 11 is
O(]A]|O|p|T|p|S|). Running times for lines 10-12 are summarized in Table 4.1.

4.4.4 Complexity Comparison

Table 4.2 summarizes the overall asymptotic complexity of the three implemen-
tations of ADDPLANE under the problem structure assumptions (S1)-(S4). The
update time field is the result of adding the overall running times of lines 10-12
from Table 4.1.

Relative to DENSE, COMPRESSED updates are faster by a factor of p but the
same storage space is required for I'. MASKED updates, on the other hand, are
faster by a factor of p2, and storage space for I is reduced by a factor of p—but
the generated « vectors are weaker in the sense that they do not support the entire
belief simplex. Our theoretical analysis does not allow us to predict whether this
trade-off is worthwhile, as other factors, including the choice of search algorithm,
come into play. The trade-off is studied empirically in §4.8.

93

4. POMDP Value Function Representation

4.5 Pruning the Max-Planes Representation

Many of the a vectors generated by point-based updates are useful in the sense
that they significantly improve the value function at some belief of interest. But
vectors generated early in the focused value iteration process often become less
useful as later vectors come to dominate them. The time and space complexity of
later updates can often be drastically reduced by pruning these less useful older
vectors from the max-planes representation.

A pruning algorithm takes as input a vector set I' and returns a subset IV C T
The algorithm is sound if, for a given error bound € > 0 and region of interest
B C B, it guarantees that

sup |JT(b) — JT'(b)| < e. (4.40)
beB

Note that most treatments of pruning discuss only the exact case with error bound
€ = 0. Setting ¢ > 0 allows the pruning algorithm to eliminate vectors that are
almost dominated. In practice, we set € just large enough to prune “false duplicate”
« vectors introduced by round-off errors in the update process.

We say that a pruning algorithm is optimal if it always returns the minimum-
size subset I that is sound. It is locally optimal if it returns a set I such that no
subset of I is sound. Optimality implies local optimality, and the two properties
are equivalent if e = 0, but in general are not if € > 0.

The pruning problem has attracted considerable attention due to its strong im-
pact on overall performance. There are at least three basic prior approaches, cov-
ered in the following subsections.

Most pruning algorithms are batch operations that apply to the entire vector
set. These algorithms can be integrated into the focused value iteration main loop
by applying pruning every time the vector set grows by a specified pruning incre-
ment relative to the size it had immediately after pruning was last applied. Our
experiments used this approach for batch pruning operations with a pruning incre-
ment of 10%. This setting was frequent enough to avoid much excess growth in the
vector set, but not so frequent that there was substantial pruning overhead. Overall
performance was not very sensitive to the size of the pruning increment.

Passive bounded pruning (§4.5.4), on the other hand, eliminates « vectors one
at a time based on calculations performed during the update process, and does not
need explicit pruning episodes.

94

4.5. Pruning the Max-Planes Representation

Algorithm 4.5 PAIRWISEPRUNE, a pruning algorithm for the max-planes repre-
sentation.

1: function PAIRWISEPRUNE.prune(I';) :
2 I — ¢

3 foracl:

4 forgel”:

5: if 3 e-dominates « :
6 reject o and skip to next iteration of outer loop
7 forgel’:

8 if o e-dominates 3 :

9: remove 3 from I/

10: I « I"u{a}

11: return I

4.5.1 Pairwise Pruning (Prior Approach)

Pairwise pruning, sometimes described as “removing pointwise-dominated vec-
tors”, is perhaps the simplest useful pruning approach for the max-planes repre-
sentation. It is tractable and sound but not optimal or locally optimal.

Given a pair of vectors o, 3 € I', we say that « e-dominates (3 if for all beliefs
b, we have a’b > 37b — e. Checking for e-domination reduces to checking that
a(s) > [B(s) — e for all states s, which requires O(|S]) time.

One can verify that the soundness condition holds if every vector in I is e-
dominated by a vector in IV. PAIRWISEPRUNE, Algorithm 4.5, builds such a set
I'". In the worst case it requires a dominance comparison for every pair of vectors,
taking O(|T'|?|S|) time overall.

Pairwise is not optimal or locally optimal. Sometimes there is a useless vec-
tor that is not dominated by any other individual vector, but is dominated by a
combination of other vectors. For example, the vector labeled B in Figure 4.4 is
dominated, but only by vectors C and E together.

4.5.2 Lark’s Filtering Algorithm (Prior Approach)

Lark’s filtering algorithm is an alternative pruning approach that is optimal for
e = 0, but expensive to compute. The algorithm is to Lark (Littman, 1996).
Whereas pairwise pruning checks whether a new vector « is dominated by any
individual vector in IV, Lark’s filtering algorithm, Algorithm 4.6, solves a linear
program (LP) which either (1) returns a belief b* where « is at least ¢ better than

95

4. POMDP Value Function Representation

Algorithm 4.6 LARKPRUNE, a pruning algorithm for the max-planes representa-
tion.

1: function LARKPRUNE.prune(I'; €) :

2 A — T

3 IV «—

4. while A #0(:

5: « <« an arbitrary vector in A

6 [the following line requires solving an LP]
7 5,b* « max, arg maxpeps(alb — maxger 5Tb)
8 iféd>e:

9: B* «— argmaxgen 310"

10: I — TVU{p*}

11: remove 3* from A

12: else:

13: remove « from A

14 return T’

all vectors in I, or (2) signals that there is no such belief, implying that « is e-
dominated.

In case (1), a vector needs to be added to I to ensure soundness. Lark’s al-
gorithm does not necessarily add «. Instead, it adds the vector 3 that, among all
vectors not yet in I, maximizes 37 b*.3 This procedure is intended to ensure that
the added vector 3 will not be dominated by a vector that is considered later in the
pruning process.

Lark’s algorithm is known to be optimal the case ¢ = 0 (Littman et al., 1996).
However, this optimality comes at the price of additional time complexity. Each
pruning episode must solve |I'| LPs, each with a constraint matrix of size O(|T'||S]).
Even solving the LPs with interior point methods that run in polynomial time, this
is much more expensive than pairwise pruning. Thus Lark’s algorithm is preferred
to pairwise pruning only for problems over which its superior pruning quality out-
weighs its greater overhead. This trade-off is so far not well understood.

4.5.3 Bounded Pruning (Prior Approach)

Bounded pruning, Algorithm 4.7, is an alternative approach that works under the
assumption that the set 3 of beliefs of interest is finite. It is “bounded” in the sense

3 An appropriate (lexicographic) tie-breaking rule should be used when selecting 3, but we will
not explain this issue in detail.

96

4.5. Pruning the Max-Planes Representation

Algorithm Pruned vectors
Pairwise A

Lark's A, B
"' 1 Bounded A.B.C

T A

Figure 4.4: Pruning results for various algorithms.

that the resulting vector set I/ is guaranteed to be no larger than |l§ |.

Over the finite belief set B, bounded pruning is both sound and locally optimal.
Its result I is typically smaller than the minimum-size subset that is sound with
respect to the whole belief simplex. In this sense it prunes more “aggressively”
than Lark’s algorithm at the cost of neglecting beliefs outside 3.

The running time for bounded pruning is dominated by the time required to
calculate inner products. With caching, the inner product o b needs to be calcu-
lated only once for each a € I' and each b € B, so the overall running time is
O(|T'||B||S|). This complexity is typically intermediate between that of pairwise
pruning and Lark’s algorithm.

Figure 4.4 compares the results of the various pruning approaches on an ex-
ample vector set I'. Thin lines represent individual « vectors. The thicker line
indicates the upper surface or maximum of the individual vectors. Points on the
upper surface show the locations of beliefs in B. In this example € = 0.

Pairwise pruning prunes vector A, which is the only pointwise dominated vec-
tor, dominated by B. Lark’s algorithm is more aggressive, pruning both A and B
because neither is part of the upper surface. Bounded pruning is most aggressive,
pruning A, B, and C because none of them is maximal for any of the points in B.

4.5.4 Passive Bounded Pruning (Novel Approach)

Bounded pruning seems like a natural fit with focused value iteration, which is al-
ready designed to use a search algorithm to focus on particularly important beliefs.

97

4. POMDP Value Function Representation

Algorithm 4.7 BOUNDEDPRUNE, a pruning algorithm for the max-planes repre-
sentation.

1: function BOUNDEDPRUNE.prune(T', B, ¢) :
22 foracel:

3 refCount(a) «— 0

4. forbe B:

5 a* «— argmaxger olb

6 increment refCount(a*)

7: return {«a € I' | refCount(a) > 0}

We can use the choices of the search algorithm as a guide for generating the belief
set BB for bounded pruning. In particular, we set BB to be the set containing (1) all
points updated so far, and (2) all the immediate successors b*° for updated points
b.

However, when using our best search algorithms and pruning periodically, we
find that this set B grows much faster than I, so the running time O(|T'||B]|S|) of
bounded pruning quickly outstrips the running time O(|T'|?|S|) of pairwise prun-
ing. Ideally, we would like to find a pruning approach that combines the speed of
pairwise pruning with the aggressiveness of bounded pruning.

These insights led to a novel pruning approach called passive bounded pruning
that runs “in the background” during the focused value iteration process. Bounded
pruning would be easy if for every belief b € B we knew the vector a € I that
maximized o”'b. But recall that inner products in the form a”'b are being calcu-
lated constantly as part of the process of performing point-based updates. We can
make dual use of those computations to speed pruning by caching them efficiently.
We take the approach of persistently caching three pieces of information for each
belief:

1. bestValue(b) is the largest value of the inner product o b that has been en-
countered so far during the course of evaluating inner products for point-
based updates.

2. bestAlpha(b) is a pointer to the vector a* that achieves the inner product
bestValue(b).

We also store one piece of information for each « vector:

1. refCount(«) is a count of the number of beliefs b such that bestAlpha(b) =
Q.

98

4.5. Pruning the Max-Planes Representation

Passive bounded pruning is triggered by changes to the cached data that oc-
cur in the process of calculating point-based updates. The bestValue(b) and
bestAlpha(b) fields are used to determine when the refCount(«) fields should be
incremented or decremented. If refCount(«) drops to zero for a particular « vector,
it is pruned from I'.

The relationship to reference counting makes it easy to verify that, like stan-
dard bounded pruning, passive bounded pruning limits the growth of |I'| so that it
remains bounded by |l§’ |. Furthermore, because it does not need to calculate any
inner products of its own, it has extremely low overhead.

However, because passive bounded pruning uses cached data that may not be
up to date, we obtain weaker soundness guarantees about the resulting vector set.
In particular, it is possible for a vector « to be pruned even if it is still useful; that
is, even if there is a belief b* € B such that a”b* > JT"(b) + . This can happen if
o is added to T after b* is added to /3, and the inner product o b* is never evaluated
during point-based updates up to the time when the reference count for o drops to
Zero.

This flaw is not as significant as it might at first seem. The soundness guaran-
tees that passive bounded pruning does provide are:

1. The cached value bestValue(b) never decreases for any b € B.

2. The cached value bestValue(b) is always at least as large as V'(b) was just
after the most recent point-based update at b. This is because when a new «
vector is generated at b, the inner product o”'b is calculated (and cached).

3. There is always a vector a € T such that a”'b > bestValue(b).

Thus, although it is possible for useful vectors to be pruned by passive bounded
pruning, this loss of information does not have the flavor of reversing the local
effect of a point-based update. Rather, much like the use of masked vectors, it
weakens the ability of a vector o to propagate improvement from its generating
belief b to other beliefs o', because o might be pruned before the cache is updated
to reflect the fact that « is dominant at ’. And note that a vector « can be pruned
only if a new vector 3 comes to dominate « at its generating belief b. In that case
we would expect 3 to dominate « at b’ as well, although this is not guaranteed to
be the case.

Another drawback of passive bounded pruning is that it is less aggressive than
standard bounded pruning. If there are “inactive” beliefs b € B that are not updated
or evaluated for a long time, then dominated « vectors that are referenced by those
beliefs remain in I'.

99

4. POMDP Value Function Representation

4.5.5 Combined Passive+Pairwise Pruning

Because passive bounded pruning fails to prune « vectors referenced by inactive
beliefs, it is possible to reduce |I'| still further using other pruning algorithms with
different dominance criteria. For this reason we complement passive bounded
pruning with periodic episodes of pairwise pruning.

Note that with focused value iteration the sets B and T are constructed incre-
mentally, so that many of the same beliefs and vectors are present across several
pruning episodes. The combined algorithm speeds up pairwise pruning by using
additional per-belief cached information:

1. mtime(b) is the “modification time” when bestAlpha(b) was last updated to
equal arg max,cr o b. This time stamp will be used only for determining
the order of various changes to the cache, so it could just as well record the
value of a global counter rather than actual time information.

And additional per-« vector information:

1. backPointers(«) is a set of pointers to beliefs b such that bestAlpha(b) = «.
(The size of this set is equal to refCount(c).)

2. ctime(«) is the “creation time”, recording the time of the point-based update
that generated c.

In order to work with passive bounded pruning, the standard pairwise prun-
ing algorithm must be slightly modified to perform some additional cache main-
tenance. Specifically, whenever a vector « is rejected from inclusion in I due to
being e-dominated by another vector 3, every belief b that references « as its best
vector is updated to reference (3 instead, and bestValue(b) is set to 37 b. This main-
tenance can be performed efficiently using the backPointers(«) information in the
cache.

We trigger an episode of pairwise pruning every time |I'| grows by 10%. At
this frequency pruning empirically takes only a small fraction of the overall running
time, and there is not much to be gained by increasing the frequency.

The time stamps allow us to avoid redundant computation in the following
ways:

1. If for a particular belief b and vector «, the best vector for b has been recal-
culated since o was generated, then we are guaranteed that bestValue(b) >
aT'b. This is useful when searching for the maximal vector at b; we can use
the guarantee to reject an older vector o without recalculating a”'b. In this
way, we use the cache to speed not just pruning but also point-based updates.

100

4.6. Upper Bound Representation

2. If there are two vectors in I' that both have creation times predating the last
pairwise pruning episode, then we are guaranteed that neither e-dominates
the other; otherwise one of them would have been pruned. We can use this
fact to avoid performing a dominance check at the next pairwise pruning
episode.

For sparse problems, both passive bounded pruning and pairwise pruning can
be modified to take advantage of compressed or masked data structures. The opti-
mizations involved are much like those for the point-based update; as such we will
not discuss them in detail.

Our treatment of pruning is unusual in that we explicitly define an approxima-
tion bound e for the pruning process. In practice we choose € to be on the order
of the round-off error we expect from other parts of the algorithm. This helps to
eliminate vectors that appear to be useful only due to round-off. For example,
it sometimes happens that exact updates at two different beliefs should yield the
same « vector, but due to round-off the actual updates generate two slightly differ-
ent vectors. In that case using an e-domination criterion allows us to prune one of
the vectors. It is our view that the round-off error encountered in real implementa-
tions tends to moot questions of tie-breaking that have often been discussed in the
prior work on pruning.

Unfortunately, the pruning process is currently a gap in our theoretical under-
standing of focused value iteration. Our arguments for convergence and validity of
bounds rely on maintaining the invariant that the bounds are uniformly improvable,
but the passive+pairwise pruning approach described in this section does not pre-
serve uniform improvability. Nonetheless we find empirically that lower bounds
VL produced with passive+pairwise pruning, like uniformly improvable bounds,
satisfy the key property that the one-step lookahead policy PV achieves at least
the expected value specified by VL.

We conjecture that this property is guaranteed, at least approximately within
an error bound related to €. Proving this would involve formalizing the idea that
passive+pairwise pruning preserves uniform improvability but only “within €” and
“over the set B”. Until such an extended analysis is in hand, practitioners who
are particularly concerned about quality guarantees may wish to avoid bounded
pruning and set € = 0.

4.6 Upper Bound Representation

The max-planes representation is not well suited to representing the upper bound
in focused value iteration. We incrementally update the max-planes vector set by
adding a new « vector, which has the effect of increasing some part of the value

101

4. POMDP Value Function Representation

function. In the case of the lower bound V'’ such an increase is an improvement,
bringing the bound closer to V*. In the case of the upper bound VU, such an
increase would actually make the bound weaker.

4.6.1 Convex Hull Projection (Prior Approach)

The idea of using a set of belief/value pairs together with convexity to upper
bound V* is implicit in certain linear interpolation approaches (Lovejoy, 1991).
Hauskrecht (2000) proposed an upper bound based on convex hull projection, with
incremental addition of new belief/value pairs.

This section situates Hauskrecht’s approach in our theoretical framework as
CONVEXHULL, a strong incremental representation. CONVEXHULL is defined as
follows:

e A value function is represented using a set T of belief/value pairs.

e The evaluation semantics are defined by the operator JH, which projects a

belief onto the convex hull of the pairs in T (explained in detail later).

e The initial uniformly improvable bound Yy is generated using the Fast In-
formed Bound method.

e The CONVEXHULL point-based update operator, HEH, adds the pair
(b,HV (b)) to T.

Now we go into more detail. A point set is a finite set of belief/value pairs
T ={® Y, ..., ")} (4.41)
Each pair (b%,v") € T is interpreted as a constraint of the form
V(') < o' (4.42)

This interpretation immediately provides an upper bound on the values V*(b%) of
beliefs that appear in Y. In order to upper bound the values of other beliefs, we
rely on the convexity of V*. Convexity implies that if b is a convex combination of
beliefs that appear in Y, V*(b) is upper bounded by the same convex combination
of the corresponding values in Y. Note that, if the implied upper bound to be finite
over the entire belief simplex, the beliefs at the corners of the simplex must be
present in the point set.

Let Y be the matrix whose columns are the beliefs b of Y, and let v be the
column vector whose entries are the corresponding values v’. Let u be a length-
| Y| vector of positive weights that sum to one. Then the convexity of V* implies

102

4.6. Upper Bound Representation

thatif Yu = b,

V*(b) < ulw. (4.43)

In order to generate the strongest possible upper bound value for any particular
belief b, we need to find the vector « that minimizes u” v. If Y is a point set and
V = JUY is the value function it represents, we define

V(b) = JHUY (D) :=ulw, (4.44)

where w is a solution to the LP

T4 with decision variable u

minimize u
subject to
Vi, u(i) >0

Yu=5>

(4.45)

Note that we have omitted the constraint that the vector v of weights sums
to one. That is because it is redundant with the constraint Yu = b under the
assumption that both b and the beliefs of T are valid probability distributions. Also
note that the LP is well defined even if the entries of b do not sum to 1; scaling b
simply scales the result accordingly, so that if ¢ > 0 is a scalar,

JHY (pb) = ¢ JHY(B). (4.46)

The LP is guaranteed to be feasible and bounded as long as the corner points
of the belief space are found in Y. Figure 4.5 shows a geometric interpretation of
JEHY for a two-state POMDP. Evaluating the upper bound at a belief b can be in-
terpreted as projecting b onto the convex hull of the belief/value pairs in Y. Circles
in the figure indicate belief/value pairs. Thick lines show the implied convex hull.
The open circle marks the projection of a particular belief b onto the convex hull.

A value function represented as a point set can be incrementally improved by
adding a point to the set. Specifically, let V' be a value function with representation
T. Then the convex hull update operator H bCH is defined such that

HMYV .= JHUY! | where (4.47)
Y :=YU{(b,HV (D))} (4.48)

103

4. POMDP Value Function Representation

V(b)) <03v'+0.7v y
1
1
| |

h=03b'+0.7b

Figure 4.5: The convex hull representation.

HYV (b) is calculated using the formula

HV (b) = max _R(b, a)+ Y Pr(o]b,a)V(b*) (4.49)
= max _r“Tb + Y Pr(o]| b,a)JHY (%) (4.50)
— max _r“Tb +) T (Pr(o] b, a)bw)] (4.51)
= max _raTb +) TN (1)) | - (4.52)

In Figure 4.6, we see V', H EHV, and HV at left, middle, and right, respectively.
H bCHV is constructed by combining (1) all points in T, shown as filled circles, and
(2) the single point (b, HV (b)) from HV, shown as an open circle. The resulting
value function H bCHV is drawn with a solid line in the middle panel.

CONVEXHULL, Algorithm 4.8, implements the rules just described for con-
vex hull projection and updates. In order to use CONVEXHULL in focused value
iteration, we need to show that it is a strong incremental representation.

Theorem 4.5. H! is a strong point-based update operator for upper bounds.
Proof. For any value function V/, define the canonical point set representation of

104

4.6. Upper Bound Representation

b b
y=J%y H"v=7"yu(b,v") HY =gy

Figure 4.6: A point-based update to the convex hull representation.

V to be the epigraph
XV :={(b,z)|be B,z>V(b)}. (4.53)

One can verify that the canonical point set representation has the following
basic properties:

(C1) For any value functions V, V/ we have

XVCXV & V<V (4.54)

(C2) For any point set ¥ we have ¥ C X JHW,
(C3) If a value function V' is convex, then we have JHXV = V.

Let T be the point set representation for a uniformly improvable value function
VU, and let Y’ be the point set representation of [EHVU. We have

(P1) HVY < VU because VY is uniformly improvable.

(P2) HVY < J°HY by (P1) and VYV = JCHT,

(P3) XJCHY C XHVVY, by (P2) and (C1).

(P4) T C XHVY, by (P3) and (C2).

(P5) (b, HVY (b)) € XHVY, by the definition (4.53) of X.
(P6) Y/ =T U{(b, HVY (b))}, by the definition (4.48) of Y’
(P7) Y' C XHVVY, by (P4)-(P6).

105

4. POMDP Value Function Representation

Algorithm 4.8 CONVEXHULL, an incremental representation.

function CONVEXHULL.evaluate(Y, b) :
Y <« the matrix whose columns are the beliefs of T
v «— the vector whose entries are the values of T
solve the LP :

1:
2
3
4
5: maximize u”
6
7
8
9

v with decision variable u
subject to :
Vi, u(i) >0
Yu=1»5
. return u’v
10:
11: function CONVEXHULL.initial ValueFunction() :
12: return fastInformedBoundInitialize()
13:
14: function CONVEXHULL.update(Y, b) :
15 v* — max, [r*Tb+~>, evaluate(T,w * (T9))]
16: return Y U (b, v*)

(P8) JHXHVUY < JCHY! by (P7) and (C1).
(P9) HVU < JOHY! by (P3), (C3), and the convexity of HV'UV.
(P10) HVY < HTMVU by (P9) and the definition HSHVY = JeHY/.

(P11) H bCHVU < VY, because adding points to the point set can only reduce the
resulting function.

(P12) HEHVY (b) = HV (b), because (b, HV (b)) is in the point set representation
T of HSHVU.

Together (P10)-(P12) establish that H bCH is a strong update operator. O

4.6.2 Sawtooth Projection (Prior Approach)

This section presents SAWTOOTH, a particularly efficient strong updatable rep-
resentation based on the same point set data structure used by CONVEXHULL
(Hauskrecht, 2000). SAWTOOTH uses approximate linear programming and lever-
ages the special structure of the belief simplex to improve efficiency. Relative to
CONVEXHULL with the same point set, SAWTOOTH provides a weaker bound but
much faster function evaluations.

106

4.6. Upper Bound Representation

The point set representation with CONVEXHULL supports incremental updat-
ing, but each function evaluation requires solving a large linear program, which
is computationally expensive. To speed up function evaluation, we can calculate
a weaker bound through approximate linear programming—any feasible value for
the decision variable v provides a valid upper bound. In general, if we fall back
from using an exact LP solution algorithm to an approximate algorithm, we find
that:

e The resulting updatable representation is conservative if (1) the approximate
LP algorithm is guaranteed to return a feasible value for u, and (2) adding

new points to the point set never increases the value u” v for any query point
b.

e The resulting updatable representation is strong if the approximate LP algo-
rithm has the additional property that when (b, v?) is in the point set and b’
is the query point, the result u always satisfies

uTv < o' (4.55)

The approximate LP algorithm used by the SAWTOOTH representation satis-
fies both properties. It simplifies solving the LP by adding additional constraints.
In true projection onto the convex hull, the weight vector u can assign non-zero
weight to any combination of beliefs. In the sawtooth projection, u is constrained
to assign non-zero weight to (1) any number of beliefs at the corners of the belief
simplex, and (2) at most one non-corner belief.

Figure 4.7 shows the distinctive shape that gives the sawtooth value function
its name. Each thin line shows the constraint induced by an individual non-corner
belief/value pair in conjunction with the corners. The lower surface of these con-
straints is the sawtooth bound, indicated with the thick solid lines. The dashed lines
show the stronger bound that would be provided by the convex hull projection for
the same point set.

Because the sawtooth projection distinguishes corners from other beliefs, we
represent the point set in a slightly different way. In particular, we define the set Y
and the length-|S| vector w such that

Y :={(b,v") € T | b’ is not a corner point} (4.56)
w(s) == min{v* | (b, v") € T,b'(s) = 1}. (4.57)

In other words,) stores the information about Y that relates to non-corner beliefs,
and w stores the v’ values for the |S| corner beliefs.

107

4. POMDP Value Function Representation

Figure 4.7: The sawtooth representation.

To derive the formula for the sawtooth projection, first note that any belief b
can be trivially expressed as a convex combination of the corner beliefs. Since the
corner beliefs are simply unit vectors in the basis directions, each entry u(s) in
the weight vector for the convex combination must be equal to b(s). The resulting
bound due to convexity is

V*(b) < wle. (4.58)

Next we consider combinations involving one non-corner belief b° from Y.
Suppose that for some ¢ > 0 and ¢ € B, we have

b= b +c. (4.59)
Then, due to convexity,
V*(b) < ¢V*(D') + V*(c). (4.60)

But V*(b%) < v¥ and V*(c) < wle, so

VH(b) < vt +wle (4.61)
< vt 4+ w?' (b — ¢b') (4.62)
< wlb + ¢(v — wl'bh). (4.63)

We know the values of all the variables in (4.63) except for ¢. In fact, we are free
to choose whatever feasible value for ¢ > 0 gives the best bound.

Since (4.63) is linear in ¢, it will be minimized at one of the extremal values
of ¢. The extreme ¢ = (0 can be ignored because it recovers the earlier bound
V*(b) < w?T'b. Thus, in order to get the best bound, we wish to find the maximum
value for ¢ that is consistent with our other assumptions. In particular, since we

108

4.6. Upper Bound Representation

used the fact that ¢ € B, all the entries of ¢ must be positive, meaning that for all s,
c(s) = b(s) — pbi(s) > 0. (4.64)

The maximal ¢ that satisfies this set of constraints is
¢ = min{b(s)/b(s) | s € S,b'(s) > 0}. (4.65)

If Y is a point set and V' = J3TY is the value function it represents under the
sawtooth projection, we define

V(b) = JSTT(b) := min z*, (4.66)
where
2% = wTh (4.67)
2t =wlb+ ¢l (v' —wTh), i >0 (4.68)
¢' = min{b(s)/b'(s) | s € S,b"(s) > 0}. (4.69)

Let V be a value function with sawtooth representation Y. Then the sawtooth
point-based update operator H gT is defined such that

H'V .= J5TY’ where (4.70)
T =Y U{(b, HV (D))}, 4.71)

and HV (b) is calculated using the formula
HV (b) = max |r*Tb+ > " JSTT (w0 « (T°))| . (4.72)
a
o
SAWTOOTH, Algorithm 4.9, implements the sawtooth projection and point-
based update using the modified (), w) point set representation.

Theorem 4.6. H" is a strong update operator for upper bounds.

Proof. The argument is precisely parallel to the proof of Theorem 4.5, replacing
all instances of J! with J5T and all instances of Hi™ with H}T. O

The LP for convex hull projection can be solved using interior point methods
in polynomial time. Sawtooth projection, on the other hand, takes O(|S|) time per
non-corner belief, or O(]|)||S]) time overall. This provides significant speedup in
practice.

109

4. POMDP Value Function Representation

Algorithm 4.9 SAWTOOTH, an incremental representation (Hauskrecht, 2000).

1: function SAWTOOTH.evaluate((), w), b) :

2 2% — wlb

3 for (b,0v') €Y

4 ¢ « min{b(s)/bi(s) | s € S,b(s) > 0}
5: gt — 204 ¢(vt — wl'bl)

6: return min; x’

7

8

9

: function SAWTOOTH.initial ValueFunction() :
return fastInformedBoundInitialize()
10:
11: function SAWTOOTH.update((), w), b) :
122 v* «— max, [r"Tb+v), evaluate((V, w),w™ (T"b))]
13: if b is the corner point for some state s :

14: w(s) «— v*

15: return (), w)

16: else:

17: return () U (b,v*),w)

4.6.3 Leveraging of Sparsity with Sawtooth (Novel Approach)

The sawtooth representation can be modified to leverage sparsity. Simply using
compressed vectors to represent beliefs reduces the complexity of sawtooth evalu-
ation to O(|Y||S|p).

Sparsity can be leveraged further using techniques akin to the masked vec-
tors and support lists introduced for the lower bound in §4.4. Under assumptions
similar to (S1)-(S4) of §4.4, the complexity of “masked” sawtooth evaluation is
O(]Y||S|p?). Like masked vectors for the lower bound, this improved efficiency
comes at the cost of reducing the support of individual belief/value pairs, providing
a weaker bound overall.

4.6.4 Pruning the Sawtooth Representation

Pruning the sawtooth representation is simpler than pruning the max-planes repre-
sentation. We use the same definitions of validity, optimality, local optimality, and
e-domination that we introduced for lower bound pruning in 4.5, but remembering
to reverse the direction of inequalities in the case of the upper bound.

A key fact is that adding a point (b%,v?) to T always has its greatest impact

110

4.7. Hybrid Tabular Representations (Novel Approach)

on JSTY at the point ' itself. This leads to the following technique for checking
pairwise e-domination. Let (b°, v*) and (b/,v7) be two belief/value pairs. Suppose
that in conjunction with the corner points, (¥/,v7) induces the constraint V*(b*) <
2. Then (b7, v7) e-dominates (b%,v?) if z < v* + €.

This pairwise dominance check can be used to perform pairwise pruning as
with the max-planes representation. Pairwise pruning builds up the result set)’ by
iterating through) and adding each pair (b°,v*) that is not already dominated by
some pair in). The corner values in the vector w are not modified by the pruning
process.

As with max-planes pairwise pruning, sawtooth pairwise pruning is relatively
efficient. Each pairwise dominance check requires O(|S|) time, and dominance
may need to be checked for O(|)|?) pairs of belief/value pairs, for O(|V|?|S|)
time overall.

Furthermore, it turns out that sawtooth pairwise pruning also carries the bene-
fits that we associated with other algorithms in the lower bound case. Specifically:

1. Like Lark’s algorithm for the max-planes representation, sawtooth pairwise
pruning is locally optimal for any ¢, optimal for ¢ = 0, and valid over all
beliefs in B.

2. Like bounded pruning for the max-planes representation, sawtooth pairwise
pruning is aggressive in that it retains only elements of the representation
that are needed to bound a restricted subset of the belief simplex—in this
case, the corners and the beliefs found in). We have reason to believe that
the beliefs of) are important, because they were chosen for point-based
updates by the focused value iteration search algorithm.

Thus, overall, the pruning analysis is easier for the sawtooth representation than
it was for the max-planes representation; we can simply use the pairwise pruning
algorithm, which wins on all fronts.

4.7 Hybrid Tabular Representations (Novel Approach)

A recurring theme in this chapter has been speeding up function evaluation even
at the cost of providing a weaker overall bound. The natural endpoint of this pro-
gression is the tabular representation, which stores values for a finite number of
beliefs and does not attempt to provide a bound for other beliefs. When imple-
mented appropriately, evaluating a belief under the tabular representation requires
only O(|S]) time; no evaluation scheme that depends on all entries of the belief
can do better. In the following discussion we use the tabular representation as a

111

4. POMDP Value Function Representation

lower bound, but it can also be used as an upper bound simply by changing signs
in a few places.
The tabular representation is formally defined as a point set

T ={®" Y, ..., ")} (4.73)

If V = J™Y is the value function it represents under the tabular representation,
we define

vt if there is a pair (b°,v%) € T with b = b’

V(b) = JET(b) = { (4.74)

—oo otherwise.

To support efficient evaluation, the point set is stored as a hash table with b’
keys and v’ values. We evaluate the function at a belief b with a hash table lookup.
This includes (1) calculating the hash function for b in O(|S|) time, and (2) check-
ing equality of b with O(1) other beliefs b’, each check requiring O(|S|) time.
Thus the overall evaluation time is O(|S]).

Point-based updates to the tabular representation are calculated in much the
same way as for other representations based on point sets. Let V' be a value function
with tabular point set Y. Then the tabular point-based update operator H, bTab is
defined such that

HI®PY .= 5 where (4.75)
T =Y U{(b,HV (b))}, (4.76)

and HV (b) is calculated using tabular function evaluations with the formula

HV(b) = max

riTh 4> JEY)| (4.77)

The tabular representation is not very useful by itself because it does not pro-
vide any bound on the values of beliefs not present in the point set. In practice,
we use a tabular value function V] in combination with some other function repre-
sentation V5 that has full support and acts as a “fallback”™, so that the hybrid value
function is

Vi(b) Vi(b) # —o0

] (4.78)
Va(b) otherwise.

Vhybria (b) = {

Point-based updates to the hybrid representation add points only to the tabular
representation point set, but the function evaluations used to calculate HV (b) for

112

4.7. Hybrid Tabular Representations (Novel Approach)

Figure 4.8: Hybrid tabular representations: (left) Hybrid tabular + max-planes
lower bound. (right) Hybrid tabular + sawtooth upper bound.

an update make use of the fallback.

Figure 4.8 shows two hybrid representations. The left panel shows a hybrid
tabular + max-planes representation for the lower bound. Points in the tabular
point set are indicated with open circles above the max-planes fallback. The right
panel shows a hybrid tabular + sawtooth representation for the upper bound. Points
in the tabular point set are again indicated with open circles, this time below the
fallback.

The hybrid representation provides several potential benefits relative to simply
using the full support function V5:

1. If most function evaluations relate to beliefs in the tabular point set, V] can
in effect act as a cache with cheap function evaluation in front of V5, which
presumably has more expensive function evaluation.

2. Because point-based updates modify only V;, we are free to use a represen-
tation for V5 that does not support incremental improvement. For example,
we could use the max-planes representation for the upper bound.

3. The size of the V, representation remains fixed over the course of focused
value iteration, bounding the amount of time required for individual function
evaluations and eliminating the need for pruning of V5.

Hybrid tabular representations provide fast function evaluation, and thus fast
point-based updates, but each update is not as beneficial because the resulting be-
lief/value pair in the point set supports only the belief that generated it—there is
no generalization to other beliefs. In the absence of generalization there is also no
obvious way to prune the point set; thus memory requirements become more of
a concern. The relative costs and benefits are problem-dependent, and we do not
have a general theory for predicting when the trade-off is worthwhile. The question
is studied empirically in §4.8.

113

4. POMDP Value Function Representation

Practical implementations of the tabular representation should also account for
round-off errors in belief updates. When calculating belief updates exactly, it some-
times happens that the same belief can be reached from by through two distinct
sequences of actions and observations. In the presence of round-off error, how-
ever, the sequences may result in two slightly different beliefs b and b’. We would
like for a point-based update at either of these beliefs to affect the other, as would
happen without round-off error.

A simple way to achieve this is to resolve each belief to the nearest grid point of
a Cartesian grid with resolution e, before passing the belief to the hash table imple-
mentation. In order to make it unlikely that two copies b and b’ of the “same” belief
map to different grid points, we choose € to be significantly larger than the mag-
nitude of the round-off errors we expect. This scheme suffers from two potential
problems that are not very important in practice:

1. False positive matches. If b and b" would nor have been the same in the ab-
sence of round-off and yet resolve to the same grid point, a “generalization
error” of [V (b) — V(b')| may be introduced. Since b and b’ are close neigh-
bors, and the maximum slope of the value function is generally bounded,
this error is unlikely to be very significant. Furthermore, informal tests with
benchmark problems suggest that false matches are extremely rare relative
to the number of true matches if € is chosen appropriately.

2. False negatives. No matter how large e is relative to the distance between b
and b', it is always possible for the two points to straddle a grid cell boundary.
In this case some generalization is lost, but we are no worse off than before.

4.8 Experimental Performance

We ran performance comparisons for many of the value function representations
described in this chapter. Each experiment involved a particular value function rep-
resentation and POMDP benchmark problem. In the course of the experiments, we
calculated an initial uniformly improvable bound and then performed a sequence
of point-based updates. At completion we measured the accuracy of the resulting
bound, the time required to make the updates, and the storage space required for
the representation.

For benchmark problems we selected the Tag, RockSample[5,7], and LifeSur-
veyl POMDPs. These are all relatively large sparse problems.

Our experiments compare five lower bound implementations:

1. comp: The COMPRESSED implementation of the ADDPLANE point-based
update algorithm, with pairwise pruning only.

114

4.8. Experimental Performance

2. comp/prune: The COMPRESSED implementation with more aggressive
combined passive+pairwise pruning.

3. mask: The MASKED implementation of ADDPLANE, with pairwise pruning
only.

4. mask/prune: The MASKED implementation with combined pas-
sive+pairwise pruning.

5. tab+comp: The hybrid tabular representation with comp as the fallback
function. Note that the fallback value function is not modified during point-
based updates, so it does not need to be pruned.

Note that we have omitted detailed comparison with the DENSE implementa-
tion of ADDPLANE. Comparison using an earlier version of our software which
supported DENSE showed that it was not competitive when applied to sparse prob-
lems like the ones in the present experiments. We have not attempted to precisely
determine the break-even point where implementations that leverage sparsity be-
come advantageous. We removed support for DENSE from more recent versions of
our software because it seemed to be dominated and it was different enough from
the other implementations that keeping it in the same code base imposed a high
maintenance burden.

To summarize the overall lower bound results, we found that the performance
ordering of the various representations, from best to worst, was mask/prune,
mask, tab+comp, comp/prune, comp. The dominance of the mask variants
was not clear-cut for Tag, the smallest problem, but became more pronounced as
we scaled up to LifeSurveyl.

We also compare three upper bound implementations:

1. comp: The SAWTOOTH implementation using compressed storage for belief
vectors. Pairwise pruning is used.

2. mask: Same as comp, but function evaluation uses support lists similar to
those used in the MASKED implementation of the lower bound.

3. tab+comp: The hybrid tabular representation with comp as the fallback
function.

Note that we have omitted comparison with the CONVEXHULL upper bound
representation, which was not competitive when tested with an earlier version of
our software (Smith and Simmons, 2005). More recent versions of our software no
longer support the CONVEXHULL representation so as to remove dependence on

115

4. POMDP Value Function Representation

Tag RS57 LS1
Num. states/actions/observations 870s 5a 300 3201s 12a20 7001s 7a 280
LB baseline representation comp comp mask
UB baseline representation comp comp comp
LB termination threshold -14.03 20.047 87.849
UB termination threshold -0.698 29.08 120.97

Table 4.3: Value function experiments: Problem parameters.

the commercial CPLEX linear program solver, which was used to perform projec-
tions onto the convex hull.

We found that the performance ordering of the upper bound representations,
from best to worst, was mask, comp, tab+comp. This ordering was clear-cut for
all three problems.

For each problem and representation we constructed a sequence of n = 10*
beliefs at which to perform point-based updates. We decided to eliminate one
source of variance by using the same baseline sequence across all value function
representations. However, we also wanted the experiment to be as relevant as pos-
sible to real usage, so we constructed the baseline sequence by running a baseline
configuration of focused value iteration.

The choice of baseline configuration was fairly arbitrary. For the search algo-
rithm we selected the high-quality FRTDP algorithm described in §6.4. For the
lower and upper bounds, we had a range of available options that traded off strong
function generalization vs. fast update time. For most problems, we selected comp,
the representation with the strongest function generalization, for both bounds. In
the case of the LifeSurveyl problem we were not able to perform n comp lower-
bound updates within a reasonable amount of time, so we used the mask rep-
resentation for the lower bound. The baseline configurations are summarized in
Table 4.3 (the termination thresholds will be explained later).

4.8.1 Performance Versus Time Plots

The first set of experiments plots performance vs. wallclock time. Specifically, in
terms of performance, we measure:

1. The bound value at the initial belief, either V*(bg) or V'V (bg). Because the
beliefs of the baseline sequence were generated by the FRTDP search algo-
rithm, which groups beliefs into “trials”, it was natural to record the bound
values at the end of each trial. In particular, the first value in each plot was

116

4.8. Experimental Performance

recorded at the end of the first trial; in some cases, when the representation
had relatively slow updates, this was several seconds into the run.

2. The expected value of executing the one-step lookahead policy based on the
bound starting from by, either JPV X (by) or JPVY (by). The plotted value
is the mean value received over 1000 runs in simulation. Because policy
evaluation is quite slow, the policy quality was only recorded a few times
during each run.

The elapsed wallclock time at the end of each performance vs. time plot roughly
corresponds to when t ab+comp, the representation with the fastest updates, came
to the end of the n = 10 beliefs in the baseline sequence. Wallclock time is
measured in seconds. The platform used for these experiments was a Pentium-4
running at 3.4 GHz, with 2 GB of RAM.

When interpreting performance vs. time plots it is helpful to remember that,
given our use of uniformly improvable lower bounds V%, the expected quality
JPVL(by) is guaranteed to exceed V% (bgy) up to statistical error in the quality
measurement. Thus, as the lower bound improves, the measured quality of the
policy based on the lower bound should also improve. However, there is no corre-
sponding guarantee for the upper bound; the .JPVU (by) plots often behave errati-
cally. This is why we recommend using the policy PV * based on the lower bound
during execution.

Tag performance vs. time is shown in Figure 4.9. The upper left panel plots
V1 (bg); higher is better. We see that there is no clear winner, but t ab+comp lags
well behind the other representations. Use of passive bounded pruning has little
impact in this case; comp and comp/prune are nearly identical, as are mask
and mask/prune. The lower left panel plots J PV (by). Again, tab+comp
lags well behind. The other representations have nearly identical performance up
to the statistical error in the policy quality measurement. The 95% confidence
interval was approximately +0.4 even after taking the mean over 1000 simulation
runs.

The upper right panel plots VU (bg); lower is better. Here mask clearly per-
forms best, followed by comp and tab+comp a bit further behind. The lower
right panel plots J PV (bg). In this case t ab+comp is the clear loser, and mask
and comp behave erratically.

RockSample[5,7] performance vs. time is shown in Figure 4.10. Again,
tab+comp lags behind the other representations in both of the lower bound plots.
However, here the mask and mask/prune representations significantly outper-
form comp and comp/prune in the V¥ (bo) plot; there is still no clear winner in
the J PV (by) plot. A possible interpretation of these data is that since the comp
lower bound provides stronger generalization than mask, its corresponding policy

117

4. POMDP Value Function Representation

Lower Bound Upper Bound
-8
-10 -
12
14 +
-16 |
-18 -
-20
0
mask —+— tab+comp -------- comp —*— tab+comp --------
mask/prune —&— mask —+—
Policy Quality (Using Lower Bound) Policy Quality (Using Upper Bound)
'6 T T T T T T T "135 T T T T T T T
s -14 |
-145
-8 + -15 +
9+ -15.5 |
-16 +
101 -16.5 |
11 F -17
12 -175
) -18 -
_13 1 1 1 1 1 1 1 _185 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 o 05 1 15 2 25 3 35

Figure 4.9: Tag performance vs. wallclock time (s).

may be more likely to substantially outperform the quality guarantee implied by
the bound.

The upper bound plots for RockSample[5,7] show the same performance order-
ing as for Tag, with tab+comp even further behind the other representations.

LifeSurveyl performance vs. time is shown in Figure 4.11. In this case the
mask and mask/prune lower bounds are the clear winners. The comp and
comp/prune updates are so slow that they do not even finish a single trial before
tab+comp finishes the baseline sequence; as a result, they do not even appear in
the plots.

The VY (bg) plots for LifeSurveyl show the same performance ordering as for
Tag, but performance is so erratic in the JPVY (by) plot that there is no clear
ordering at all.

118

4.8. Experimental Performance

Lower Bound Upper Bound
24 30.5 T T T T T T T T T
22 - 30 F X
20 - 295 F 1
i »f
14 28.5
12 F i 28
10 | ! 275 %
8 27 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
mask —+— tab+comp -------- comp —*— tab+comp --------
mask/prune —8— mask —+—
Policy Quality (Using Lower Bound) Policy Quality (Using Upper Bound)
24 T T = .- = -.— AR . 18 T T T T T T
2 F ! 7 16 +
20) 14 |
18 - b
12 -
16 - b
14 L | 10 -
12 + . 81 .)
10 1 1 1 1 1 1 1 1 1 6 < 1 1 PR S Rt SO
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Figure 4.10: RockSample[5,7] performance vs. wallclock time (s).

4.8.2 Equal Precision Comparison

In another set of experiments we updated each lower bound representation until
it satisfied an “equal precision” criterion. Specifically, we designated a particu-
lar bound value as a threshold and terminated the run when VX (bg) crossed this
threshold. We could then compare the amount of time and space the various rep-
resentations required to achieve the specified threshold. We performed the same
experiments with upper bound representations using a termination threshold for

VY (by).

For each problem and each bound type (lower or upper), we selected the pre-
cision threshold to be the strongest bound value that could be reached by all of
the representations within approximately n = 10% updates. In practice this was
the bound at by calculated by the t ab+comp representation after n updates, since

119

4. POMDP Value Function Representation

Lower Bound Upper Bound
128 T T T T T T T T
126
124 | & Lo
122 - W L -
120
118
] 116
81 H 1 1 1 1 1 114 1 1 1 1 1 1 1
0 2 4 6 8 10 0 1 2 3 4 5 6 7 8
mask —+— tab+comp -------- comp —*— tab+comp --------
mask/prune —&— mask —+—
Policy Quality (Using Lower Bound) Policy Quality (Using Upper Bound)

93

92

91

90

89

88

87

86

Figure 4.11: LifeSurveyl performance vs. wallclock time (s).

tab+comp has the weakest generalization.* The termination thresholds we used
are given in Table 4.3.

Table 4.4 gives lower bound time performance results for the equal precision
experiments. The first set of columns shows the number of point-based updates
required to reach the termination threshold bound value; the second set gives the
corresponding wallclock time in seconds. The best (smallest) results in each col-
umn are in bold type.

As one would expect, the comp representation achieves the desired preci-
sion with a smaller number of updates, since it has the strongest generalization;

“Based on the way the termination thresholds were set, one might expect the number of updates
in the tab+comp row of Table 4.4 to be approximately n = 10 for all problems. In fact, it is
sometimes much smaller because the V' (bo) value for t ab+comp tends to hold steady at certain
“plateau” values for long periods. Thus t ab+comp may reach the termination threshold early in the
baseline sequence but never surpass it before the sequence ends.

120

4.8. Experimental Performance

Num. of updates Wallclock (s)

Tag RS57 LS1 | Tag RS57 LSI
comp 71 171 23 | 1.31 306 273
comp/prune 71 196 23 | 1.31 265 272
mask 171 396 146 | 1.29 39 1.1
mask/prune 171 396 146 | 1.29 3.8 09
tab+comp 10030 8896 1446 | 4.06 18.7 2.8

Table 4.4: Lower bound time performance.

comp/prune is comparable. However, the updates of mask and mask/prune
can be computed so much faster that these representations outperform comp and
comp/prune on the basis of wallclock time. The t ab+comp representation has
still faster updates, but its overall performance turns out to be slower due to its lack
of generalization.

Table 4.5 gives lower bound storage space results. The first set of columns
gives the number of a vectors in the vector set I' for the comp and mask repre-
sentations, and the number of points in the tabular point set Y for the tab+comp
representation. The second set of columns gives the corresponding storage space
required, calculated according to the following rules:

The space required for an « vector is defined to be the number of non-zeros
in the compressed representation.

For each masked « vector used in the mask and mask/prune representa-
tions, we also add the number of non-zeros in the mask vector.?

For each belief/value pair in the t ab+comp point set, we count the number
of non-zeros in the compressed representation of the belief and add one entry
for the value.

The reported space for the t ab+comp representation also includes the space
required to store the comp fallback function.

In our implementation each “entry” in the above counts corresponds to an
8-byte double-precision floating point value accompanied in most cases by
a 4-byte integer index. Thus to upper bound the real memory requirements
one can multiply the reported storage space by 12 bytes.

3Since mask vector entries are boolean-valued, they could be stored more efficiently than real-
valued « vector entries; however, for convenience, our implementation uses the same data structure
for both types of vector.

121

4. POMDP Value Function Representation

|| or |Y| Space
Tag RS57 LSI Tag RS57 LSI
comp 64 144 27| 54K 461K 189K
comp/prune 59 99 22 | 50K 317K 154K
mask 121 204 83| 32K 35K 87K
mask/prune 94 197 63| 25K 35K 16K
tab+comp 4467 3583 504 | 124K 208K 59K

Table 4.5: Lower bound storage space.

Num. of updates Wallclock (s)
Tag RS57 LS1 | Tag RS57 LSI1
comp 1507 221 771|324 180 2.05
mask 1507 221 771 | 1.83 1.70 1.62
tab+comp | 1984 1062 7146 | 3.84 3.68 7.12

Table 4.6: Upper bound time performance.

In this table, we see in the |I'| columns that comp and comp/prune achieve
the termination threshold with fewer vectors, due to the fact that each vector sup-
ports the entire belief simplex. Of these two, the comp/prune representation
requires slightly fewer vectors, which makes sense due to its more aggressive prun-
ing. In the space columns, however, the mask and mask/prune representations
show better performance. Although the masked representations require more «
vectors, each vector is so much sparser that the representation requires less overall
space. Of the two masked representations mask /prune requires fewer vectors
and less space due to more aggressive pruning. The tab+comp representation
lags behind on both metrics.

Table 4.6 gives time performance results for the upper bound representations.
The first set of columns shows the number of point-based updates required to reach
the termination threshold bound value; the second set gives the corresponding wall-
clock time in seconds.

In this table the comp and mask representations require the same number of
updates to reach the termination threshold, but the wallclock time measurements
show that individual ma sk updates are marginally faster, making it faster overall.
The tab+comp representation is again weakest both in number of updates and
wallclock time, although its individual updates are faster than both of the other
algorithms.

Table 4.7 gives upper bound storage space results. The first set of columns

122

4.8. Experimental Performance

|T] Space
Tag RS57 LSI Tag RS57 LS1
comp 952 114 375 | 47K 88K 7.1K
mask 952 114 375 | 47K 88K 17.1K
tab+comp | 4392 453 1634 | 118K 28.5K 31.3K
(corners) 870 3201 7001 IK 32K 7.0K

Table 4.7: Upper bound storage space.

gives the number of points in the tabular point set Y. The second set of columns
gives the corresponding storage space required, calculated according to the follow-
ing rules:

e For each belief/value pair in the point set, we count the number of entries in
the compressed representation of the belief and add one entry for the value.

o All three representations store the vector w of corner belief values in the
same way, as a vector in dense storage mode with one value entry for each
corner. The space required to store w is not included in the measurements
for the individual representations. Instead, it is called out as a separate row
of the table, marked (corners).

e As in the lower bound case, one can upper bound the real memory require-
ments by multiplying each entry count by 12 bytes.

In this table the comp and mask upper bound representations show identical
storage requirements with the t ab+comp representation lagging behind as usual.

4.8.3 Error Distributions

Our final set of experiments studied bound precision more carefully. The experi-
ments presented so far have measured bound error only at the initial belief, either
VE(bg) or VY (bg). Here we quantify bound error over a broader distribution of
beliefs. In this way we can more directly compare the amount of generalization
provided by different representations.

We define the error of an approximate value function V to be the random vari-
able

5(b) := V(b) — V*(b), (4.79)

where beliefs b are drawn from some belief distribution A. We hope to get insight
into the quality of the approximation V' by plotting the distribution of 4.

123

4. POMDP Value Function Representation

We constructed an approximation V for each representation by performing
point-based updates over the first 1000 beliefs from the same baseline belief se-
quence that we used in the earlier experiments.

In order to study the distribution of §, we needed to choose an appropriate
belief distribution. We first thought of using a uniform distribution over the belief
simplex. However, every sample from a uniform distribution would be an interior
point of the belief simplex with probability 1. This would ignore the fact that
particular sparse beliefs tend to be more relevant to the value of good policies than
arbitrary beliefs. It would also report large errors for representations like the lower
bound mask representation, whose elements support only boundary hyperfaces of
the belief simplex, even though we know those representations can lead to good
policies in practice.

Instead, we elected to use two different belief distributions, called A and B.
Both were drawn from subsets of the baseline sequence, which meant they focused
on beliefs relevant to good policies. Distribution A assigned equal probability
to each unique belief that appeared among the first 1000 beliefs in the baseline
sequence. Distribution B assigned equal probability to each unique belief that (1)
was not in A and (2) appeared somewhere among the positions 1001-2000 in the
baseline sequence.

Note that our construction of V ensured it was updated at all of the points in A
and none of the points in B. Thus distribution A relates to “local error” at updated
beliefs, and distribution B relates to generalization.

Taking a sample from the error distribution 4 means taking a sample from one
of the belief distributions and then calculating the corresponding value §(b). Un-
fortunately, for our benchmark POMDPs, we had no tractable way to compute the
exact value of V*(b), so we could not compute 0 (b).

Instead, we settled for an approximation. In place of V*, we used an approx-
imate value function V< that was constructed by running focused value iteration
in the baseline configuration with all n = 10* beliefs in the baseline sequence.
Recall that V was constructed using updates at only the first 1000 of these beliefs.
Also recall that the baseline configuration that generated V¢ used the bounds rep-
resentations with the strongest generalization. Thus we expected V< to be a more
precise approximation to V* than v, justifying its use as a stand-in for V*.

Figure 4.12 gives the cumulative distribution function (c.d.f.) of J under var-
ious representations for the RockSample[5,7] problem. Specifically, the lower
bound plots show the function y = Pr(d < z) and the upper bound plots show
the function y = Pr(d > z). In both cases, smaller y values indicate higher accu-
racy, since they mean that the probability mass of § clusters near zero. For these
“equal updates” plots, the bound V for each representation was constructed using
1000 updates.

124

4.8. Experimental Performance

The two left panels of the figure give lower bound c.d.f.s for distribution A
(top) and distribution B (bottom). Similarly, the two right panels give upper bound
c.d.f.s.

Note that if a representation has good generalization, that should show up as
similar error plots for distribution A (beliefs already updated) and distribution B
(beliefs not already updated). Also, because the tab+comp representation per-
forms no generalization, we know that its precision over distribution B (beliefs not
already updated) is just the precision of the fallback function at initialization.

Examining the plots, there are a number of qualitative conclusions we can
draw:

e Since all of the representations were given an equal number of updates, we
were not surprised to see that the representations which favor strong gener-
alization over faster updates showed smaller error across all of the plots.

e Variants of the comp and mask lower bound representations showed re-
markably similar error over distributions A and B, indicating good general-
ization. The stronger full-support vectors generated by comp updates per-
formed better than ma sk over both distributions.

o Passive bounded pruning had little impact; comp and comp /prune showed
essentially identical precision, as did mask and mask/prune.

e In contrast, none of the upper bound representations showed good gener-
alization. Both comp and mask were little better than tab+comp over
distribution B. This means that, with respect to beliefs not already updated,
their bounds were not much improved relative to the initial upper bound even
after 1000 updates.

Figure 4.13 is similar to Figure 4.12, but uses “equal time” construction of 14
rather than equal updates. We allowed each representation the same amount of
wallclock time to generate V, so the number of updates performed differed based
on speed; the actual number of updates each representation completed is shown in
parentheses in the plot key. The distributions A and B were the same as for the
previous experiment, so representations that completed fewer than 1000 updates
were only updated over a fraction of the beliefs in distribution A.

Our conclusions from the equal time plots are:

e As before, variants of the comp and mask lower bounds generalized well,
and all upper bound representations generalized poorly.

e This time variants of the mask lower bound outperformed comp over both
distributions, reflecting their much faster updates.

125

4. POMDP Value Function Representation

Lower Bound, Distribution A

T T
comp (1000) —>— 7

Upper Bound, Distribution A

T T
09 comp (1000) —>— |
comp/prune (1000) —&— a - mask (1000) —+—
0.8 mask (1000) —+— Fe 0.8 tab+comp (1000) -------

mask/prune (1000) —8— i
tab+comp (1000) —-—-—-— /

0.6

0.4

-30 -25 -20 -15 -10 -5

Lower Bound, Distribution B

T T L
comp (1000) —>— /,/"
comp/prune (1000) ——

Upper Bound, Distribution B

T T T T
comp (1000) —>—
mask (1000) —+—

08 mask (1000) —+—" - 08 I tab+comp (1000) - i
mask/prune (1000) —EI/—A
tab+comp (1000) —-—;=-— .
0.6 ! 06 | 4
04 04 -
02 02 -
0 &~ : 0 L L L R S
-30 -25 -20 -15 -10 -5 0 0 0.5 1 1.5 2 2.5 3

Figure 4.12: RockSample[5,7] precision distribution with equal updates.

o Interestingly, the t ab+comp upper bound representation outperformed ma sk
and comp over distribution A, even though it made only about 20% more up-
dates than mask. This seems to indicate that when no representation offers
particularly strong generalization, speed of updates becomes a more impor-
tant factor in performance.

Error distributions for the other benchmark problems, Tag and LifeSurveyl,
were similar. We have omitted the plots for brevity.

4.9 Conclusions

This chapter both introduced novel value function representations and helped to
sketch how they relate to existing representations in a broader theoretical frame-
work.

We presented four novel lower bound representations, labeled in the experi-
ments as comp/prune, mask, mask/prune, and tab+comp. There were also
two novel upper bound representations, mask and tab+comp. We showed that

126

4.9. Conclusions

Lower Bound, Distribution A Upper Bound, Distribution A

1 T 1 T T T T T
comp (596) —>—
mask (796) —+—
- 0.8 tab+comp (1000) ------- -

T
comp (23) —<—
comp/prune (23) ——
0.8 mask (346) —+—
mask/prune (346) —5—
tab+comp (1000)

0.6

0.4

Lower Bound, Distribution B Upper Bound, Distribution B

1 T T T T T
comp (596) —>—

T) T -
comp —x— -
4 mask (796) —+—

comp/prune (23) —6— .~

0.8 - mask (346) —+— 7 - 08 S tab+comp (1000) ------- -
mask/prune (346) —8
tab+comp (1000) — =
0.6 / - 0.6 - -
0.4 e 04 e
0.2 - 02 -
0 1 0 1 1 1
-30 -25 -20 -15 10 -5 0 0 0.5 1 1.5 2 2.5 3

Figure 4.13: RockSample[5,7] precision distribution with equal wallclock time.

several existing and novel representations are strong incremental representations
that preserve uniform improvability; all of these proofs are novel.

The various representations also showed a trade-off between fast point-based
updates and strong generalization. This trade-off is summarized in Table 4.8. We
have given each representation a subjective evaluation based on both our theoretical
understanding and experiments. Evaluations for the most important columns, “Ex-
perimental time” and “Experimental space” are based wallclock time and storage
requirements measured experimentally in §4.8.2.

The top part of the table lists lower bound representations and the bottom part
lists upper bound representations. In each section the representations are arranged
in decreasing order of generalization strength, which corresponds to increasing
order of update speed. In both cases, it is interesting to see that compromise ap-
proaches that balance these criteria have the best experimental performance.

We expect, however, that the performance ordering for these representations
strongly depends on the selected benchmark problems. Particularly in the case of
the lower bound, update speed enhancements that leverage sparsity should be less
advantageous for denser problems. Future work may provide a better understand-

127

4. POMDP Value Function Representation

Lower bound Update Update Experimental Experimental
representation generalization speed time space
DENSE best poor n/af n/ay

comp best fair poor poor
comp/prune* good fair poor poor

mask* fair good good good
mask/prune* fair good best best
tab+comp* none best fair poor

Upper bound Update Update Experimental Experimental
representation generalization speed time space
CONVEXHULL best poor n/ayj n/ay

comp poor fair good best

mask* poor fair best best
tab+comp* none best fair fair

* - representations with significant novel features
1 - not tested; showed poor time performance in prior experiments

Table 4.8: Summary of representation comparison.

ing of this issue.

128

Chapter 5

Max-Planes Approximation
Bounds

Many existing algorithms use the max-planes representation of the POMDP opti-
mal value function V*, so it is natural to ask how many « vectors are required to
approximate V* within e.

Pineau et al. (2006) developed one well-known bound. A finite set B is said
to cover the belief simplex 5 with sample spacing ¢ if every belief in B is within
distance ¢ of a point in B. Pineau et al. selected such a set and developed an
approximation to V* that associated one « vector with each point in B. They
showed that the max-norm of the approximation error was linear in the 1-norm
sample spacing.

We developed two novel bounds along the same lines. The first generalizes the
result of Pineau et al. to include a certain type of non-uniform sample spacing.
We showed that for discounted POMDPs, tight spacing is needed only near beliefs
that can be reached from the initial belief by within a few time steps. Specifically,
we show that a weighted max-norm of the approximation error is linear in the
sample spacing according to a weighted 1-norm. Importantly, the weighted max-
norm approximation error can be related to the regret of the corresponding one-step
lookahead policy.

The second bound relies on a transformation of the belief simplex that spreads
out the curvature of V*. We use uniform sampling in the transformed space, which
corresponds to concentrating samples in high-curvature areas of the original space.
We show that the max-norm of the approximation error is quadratic in the 2-norm
sample spacing. Roughly speaking, this reduces the number of « vectors needed
to achieve a given approximation error from n to y/n.

129

5. Max-Planes Approximation Bounds

Figure 5.1: A max-planes approximation.

5.1 Technical Background

Since the optimal value function V* of a POMDP is convex, it is natural to ap-
proximate it using the maximum of a set I' of hyperplanes, also called « vectors,
according to

V() =~ V(b) = max(ar - b), (5.1)
ac
also written
V = maxT. (5.2)

We call this the max-planes representation.! Figure 5.1 shows an example max-
planes approximation. The true value function V* is shown as a thick curved line.
The individual o vectors of I' are shown as thin dashed lines. The approximation
V is their upper surface, shown with thin solid lines.

Of course, there are many possible max-planes approximations to any given
value function. We are most interested in approximations that optimize three prop-
erties:

e V should have small approximation error relative to V*. For POMDP plan-
ning, perhaps the most relevant error measure is the policy regret induced by

"We use the term “max-planes representation” to specifically mean a set of a vectors. Max-planes
representations can exactly represent a class of functions known as “piecewise linear and convex
(PWLC) functions” or “convex polytopes”. Those names are sometimes used interchangeably with
our definition of “max-planes”. However, we prefer the term “max-planes” to distinguish from other
representations for the same function class, such as the convex hull representation (see §4.6.1).

130

5.2. Fully Tangent Bounds and Belief Sampling

the approximation error under the one-step lookahead policy PV:

regret(PV) := Jr*(by) — JPV (by) (5.3)
= JPV*(by) — JPV (b). (5.4)

We will also relate the policy regret to other error measures that are easier to
work with, including the max-norm |V* — V| and a weighted max-norm.

e |I'| should be small. With fewer o vectors, time and space complexity are
reduced.

e V should be a valid lower bound on V* so that it can be used as the lower
bound representation for focused value iteration. All of the approximations
we discuss in this chapter are valid lower bounds.

Given a convex value function V, a value function error metric D(-, -), and an
approximation error € > 0, the set of e-approximating max-planes lower bounds is
defined to be

MP(V,¢€) := {I' | maxI' <V and D(V,maxT") < ¢}. (5.5)
Let N (V, €) denote the size of the smallest e-approximation

N(V,e)= min |T|. (5.6)
I’eMP(V,e)
We say a particular e-approximation I" is minimal if |[I'| = N(V, €). We are inter-
ested in techniques for finding minimal or near-minimal approximations, particu-
larly with respect to the policy regret error metric.

5.2 Fully Tangent Bounds and Belief Sampling

We say that a max-planes representation I is fully tangent to V' if every « vector in
I" touches V' at some point in the belief simplex. It is intuitively clear that under any
reasonable error metric, among the minimal e-approximating max-planes lower
bounds for V, there must be some that are also fully tangent. This is because
any valid lower bound that is not fully tangent can be made fully tangent without
increasing its approximation error—we simply move any non-touching « vectors
up until they touch V.

Based on this insight, we will restrict our attention to fully tangent representa-
tions constructed using the following process:

131

5. Max-Planes Approximation Bounds

unique subgradient
range of subgradients

4
~~~~~
-

Figure 5.2: Subdifferentials of a convex function.

1. Select a finite set B of sample points from the belief simplex.

2. For each belief b € B, add to T a vector o which is a subgradient of V at b.
That is, o must: (1) nowhere exceed V' and (2) touch V' at b. We denote the
resulting set of vectors I'5.

The set of subgradients of V' at an interior point b is called the subdifferential,
denoted DV (b). At points where V is differentiable there is a unique subgradient.
Where V has a kink there is a range of subgradients. In general, the subdifferential
is always a non-empty convex compact set. Figure 5.2 shows the subdifferential at
two points for an example function.

In our asymptotic analyses it turns out not to be very important which sub-
gradient is chosen at each belief in the sample set. For the sake of concreteness
we specify an arbitrary selection rule. We use the minimum subgradient V~V (b),
which we define to be the first element of DV (b) in lexicographic order. V~V (b)
is a vector, and V; V(b) denotes its ith component.

A sample spacing measure over B is a mapping 0 : 28 — R*. Given a sample
set B C B, §(B) is its sample spacing. Small values of §(B) correspond to denser
coverage of B3 and thus (we hope) to a better approximation I'®. For example, for
any norm | - |, on B, there is an associated sample spacing measure J,, defined
according to

0z(B) == max 21:1612 Hb - b/”I . (5.7)

The value 0,(B) is simply the maximum distance that one can get from any point
in B while still remaining inside B, with distances measured according to |-|.,.

132



5.3. Uniform Sampling

Thus we can speak of the “1-norm sample spacing” d; or the “max-norm sample
spacing” doo.

Each sample spacing measure § implicitly defines a sampling strategy, which is
simply a way of spreading out any given number of sample points so as to minimize
the sample spacing according to §. If § is based on a familiar norm such as the
1-norm, then the sample spacing is minimized when the points are more or less
“evenly spread out”. We informally call this uniform sampling. With a more exotic
measure ¢, the sample spacing may be minimized when points are concentrated in
particular regions of 1.

The rest of this chapter studies the approximations achievable using three sam-
pling strategies:

1. Uniform sampling of the belief simplex using d;. This is a brief review of
some results from Pineau et al. (2006).

2. Concentrating by reachability. In discounted problems, value function pre-
cision is most important at beliefs that can be reached from by within a few
time steps. We generalize results from Pineau et al. to a non-uniform sam-
pling, with sample spacing measured by a weighted 1-norm.

3. Concentrating samples by curvature. In low-curvature regions of V, a single
a vector can approximate V' well over a larger volume. We show how to use
fewer o vectors by concentrating samples in high-curvature areas.’

5.3 Uniform Sampling

Pineau et al. (2006) derived the basic results about uniform sampling for POMDP
value functions, relating 1-norm sample spacing of BB to max-norm approximation
error and policy regret of I'5. They started by bounding the range of possible
“slope” values of V'*.

For any convex function V' defined over a convex set B, let o (V') be the largest

possible max-norm difference between any two subgradients of V' over the interior
of B:

o(V):=max{|a—d|| |« € DV(b),a/ € DV(V),b,b' € int(B)}. (5.8)

We can upper bound o(V*) when V* is the optimal value function of a dis-
counted POMDP. This is because each entry of an « vector subgradient to V*

2 Although we speak informally of “curvature”, in fact our analysis uses robust techniques that
apply to any convex function, even if it is not continuously twice differentiable.

133



5. Max-Planes Approximation Bounds

must be an achievable total discounted reward value, starting from some state and
following some policy. If we define

R := Iguan R(s,a) (5.9
Ripax i= max R(s,a), (5.10)
then each entry «(s) satisfies
a(s) < Riax + YRmax + 7 Rmax + - (5.11)
::fmj. (5.12)

Similarly, a(s) > Rmin/(1 — 7). Thus

o(V*) = max|la — o[ (5.13)
= max(a(s) — a'(s)) (5.14)

< M (5.15)
L=y
Pineau et al. then showed that the max-norm error of the 3 approximation is
linear in the 1-norm sample spacing of :

Theorem 5.1. (Paraphrased from Pineau et al. ( 2Q06 ).) Let V' be a convex function
defined over a compact set B, let a sample set B C B be chosen, and let V =
max I'B. Then

IV = Voo < 81(B)a(V). (5.16)

In order to relate this result to efficient POMDP value iteration, they introduced
an approximate Bellman update operator H z on value functions that consists of (1)
applying the exact Bellman update H, then (2) forming the max-planes approxi-
mation with the sample set B.3 Unlike the exact Bellman update, Hy produces a
value function whose representation has bounded size, at most ]l’;’ | o vectors. Thus
it can be computed efficiently.

Next they showed that because [ is a contraction, no matter how many times
the approximate version H 3 is applied, the total error from all the approximations
remains bounded:

3In §4.5.3, we described step (2) as “bounded pruning”.

134



5.3. Uniform Sampling

Theorem 5.2. (Pineau et al., 2006) Let t be a positive integer and let V}/B be the
result of applying the H g operator t times to Vi = 0. Then

IV = Vifloo = |H'VG — HEVy oo (5.17)
S (Rmax - Rmin)61 (B) ) (518)
(1—7)?

The max-norm approximation error can be related to policy regret using a
bound from Williams and Baird (1993):

N 2 N
regret(PV) < ﬁl\‘/* —V]eo- (5.19)

Finally, we can use the d; analysis to get an upper bound on the size of the
minimal e-approximating max-planes lower bound, N (V, €). We will make some
simplifying assumptions (at the cost of loosening the resulting bound):

e We analyze convex functions over a class of domains in the form X =
[0, L]%, where L > 0 is a size scale and d is the integer dimensionality.
The POMDP belief simplex does not take this form, but any results we find
can be applied to a POMDP belief simplex B using the fact that B C [0, 1]I5].

e We restrict ourselves to sampling based on tiling X with uniform hyper-
cubes, where sample points are found at the centers of the cubes. This is not
an ideal sampling strategy for the §; spacing measure, but it is not too bad,
and it has the virtue of being particularly easy to analyze.

These assumptions lead to the following bound.

Theorem 5.3. Let L > 0 be a length scale, d an integer dimensionality, and X =
[0, L]%. Let V be a convex function defined over X. Let € > 0 be the maximum
allowable approximation error. Then, measuring approximation error according
to the max-norm, the number of o vectors needed is upper bounded by

d
N(V,e) < B dL"(VW . (5.20)

€

Proof. We will cover X with uniform size hypercubes and place sample points at
the centers of the hypercubes. Let the hypercubes have edge length W, so that the
total number of hypercubes needed is

n=[L/W1< (5.21)

135



5. Max-Planes Approximation Bounds

(a) uniform

Sb) non-uniform
density

ref ectin% discounted
reachability

reachable
beliefs

Figure 5.3: Uniform sampling vs. concentrating by reachability.

From Theorem 5.1, we know that the approximation error satisfies € < §1(B)o (V).
Therefore in order to ensure small enough approximation error we need to choose
W so that

61(B) < e/a(V). (5.22)

Within a hypercube, the points farthest from the center are at the corners. If the
hypercube has edge length W, the distance from the center to a corner under the
1-norm is %dW, meaning we need

%dW < e/o(V) (5.23)
W > ;dgiv) (5.24)
(5.25)

Substituting the minimum valid value of 1/W into (5.21), we find the desired
bound

d
n= FW-‘ . (5.26)
2 €

O]

5.4 Concentrating Samples By Reachability

In discounted problems, one can tolerate more approximation error at points that
are only reachable from by after many time steps. This section analyzes what hap-
pens when the sample spacing varies according to what we call discounted reach-

136



5.4. Concentrating Samples By Reachability

ability (Figure 5.3). We will see that there is a trade-off between sparse sampling
and the convergence rate of value iteration.

The discounted reachability p : B — R is defined to be p(b) = v*, where L is
the length of the shortest possible sequence of belief-state transitions from b to b.
p satisfies the property that p(b') > ~vp(b) whenever there is a single-step transition
from b to 0. Based on p, we define a generalized sample spacing measure 6; ,-»
(with0 < p < 1):
i [b— ¥,

(B) = maxmin ———~ (5.27)

)
! beA yven pP(b)

PP
For the remainder of this section, we will use the shorthand 4, for 6; ,-». In order

to achieve a small J,, value, B must have small 1-norm distance from all points in
B, but its distance from b can be proportionally larger if p(b) is small.

When sample spacing is bounded in terms of d,, Hy does not have the error
properties we want under the usual max-norm |-|_,. We must define a new norm
to reflect the fact that Hp induces larger errors where p is small. A weighted max-
norm is a function |-| such that

|W—VM£:%MW@V@’ (5.28)

()

where ¢ > 0. Not surprisingly, | - |, ,~» is the norm we need; we will also refer to
this norm using the shorthand | - |, or simply as the “reachability norm”. Note that
when p = 0, d), reduces to the uniform 1-norm spacing measure and |-|,, reduces
to the max-norm.

Our first result analyzes the behavior of H and H z under the reachability norm.
H is a contraction under the reachability norm, but with contraction factor ~!~?
rather than . Thus higher p values allow sparser sampling, but at the cost of a
lower convergence rate.

Theorem 5.4. The exact Bellman update H is a contraction under |- p With con-
traction factor y' P,

137



5. Max-Planes Approximation Bounds

Proof. For any a, the mapping V +— a ® V has contraction factor ' ~P

(@@ V)(b) = (a® V)(b)]

la@V —ac V]| = PO (5.29)
_ / V() - V()
= max -y ; Pr(t' | b, a) PO (5.30)
i V() = V)]
< maXV;Pr(b |b, a) o] (5.31)
< mgxx*yl_p zb: Pr(t/|b,a) ||V — VHp (5.32)
=7V -V, (5.33)

Now choose an arbitrary b € B. Assume without loss of generality that HV (b) >
HV (b). Choose a* to maximize (a* ® V)(b) and a to maximize (@ ® V) (b). It
follows that (a* ® V)(b) < (a® V)(b) < (a* ® V)(b), and

[HV (b) — HV (b)] = [(a” @ V)(b) — (a® V)(b)| (5.34)
<[(a"@V)(b) — (a" @ V)(b) (5.35)
< max (a®@V)(b) — (a®@ V)(b)] (5.36)

Dividing through by p~P(b) and maximizing over b yields
|HV — HV|, < max|(@® V) ~ (a & V)], (5.37)
<y PV =V, (5.38)
O

Next, we generalize Theorem 5.1 to the reachability norm.

Theorem 5.5. Let V' be a convex function defined over a compact set 3, and let a
sample set B C B be chosen. Then

|V — max T8, < 6,(B)o(V). (5.39)

Proof. The argument is analogous to the proof of Lemma 1 in Pineau et al. (2006).
Necessary changes: (1) divide throughout by p~P(¥'), and (2) substitute v'~7 for
~ in the denominator to reflect the changed contraction properties of H under the
new norm. 0

138



5.4. Concentrating Samples By Reachability

Combining the two previous results, we can generalize Theorem 5.2. This
establishes that when B is sampled according to dp, value iteration using the H
update operator converges to an approximation of V*, with bounded error under
the reachability norm.

Theorem 5.6. Let t be a positive integer and let V;B be the result of applying the
H g operator t times to V' = 0. Then

[V = Vil = [H'Vs — HEVg (5.40)
(Rmax - len)(sp([;,)
< =102 (5.41)

Proof. The argument is analogous to Theorem 1 of Pineau et al. (2006). Necessary
changes: (1) replace the max-norm with the reachability norm, and (2) replace y
with y1 =P, O

Finally, we can generalize the policy regret bound from Williams and Baird to
use the reachability norm.

Theorem 5.7. Let # = PV. Then the regret from executing 7 rather than 7*,
starting from by, is at most

271_}) * ¥
mHV — V. (5.42)
Proof. Choose b € 3. We have
|[Jm*(b) = J& ()| = [V*(b) — (7 @ J7) (D)
= |V*(b) = (R @ V)(b) + (F @ V)(b) — (& ® J7)()]
<|VHb) = (R @ V)(O)| +|(F @ V)(b) — (7 © J7)(b)]
< |HV*(b) — HV (b))

< [HV*(b) - HV (0)|

0 S Pe(v b, 7 (0))y P POV — Tl
b/

< [HV*(0) = HV ) +4" o PNV = J7lp (5:43)

139



5. Max-Planes Approximation Bounds

Dividing through by p~?(b) and maximizing over b gives

|Jr* — J#|, < |HV* — HV |, + 42|V = J#|, (5.44)
<AV =V + |V = J7]p) (5.45)
< ’Yl_p( v — V”p + HV =V

+ V= Jxl,) (5.46)
<AV =V + |VF = TR ) (5.47)
=2V = V] + | I — T7], ) (5.48)
= 9P|V = V|, + AP T — T7 . (5.49)

Solving the recurrence,

1

* ~ 27 P * ¥

And since p(by) = 1, we have the desired regret bound:

271_17

Jr*(bo) — J7(bo) < 1_771_1)

IV = V], (5.51)

5.4.1 Reachability: Implications for Algorithm Design

The bias of our model toward beliefs with high discounted reachability describes
current point-based value iteration algorithms more accurately than uniform sam-
pling, at least to the extent that the algorithms perform a (typically shallow) forward
exploration from the initial belief to generate B.

The parameter p arose naturally during our analysis. p = 0 corresponds to uni-
form sampling and the usual max-norm. As p increases, samples grow less dense
in areas with low reachability and the norm becomes correspondingly more toler-
ant. But the results show that there’s no free lunch: the higher effective discount
factor 7! ~7 under the new norm means that more updates are required and the final
error bounds are looser.

One natural way to apply these results is to use d,, rather than ¢; as the spacing
measure used when selecting points to add to B in the belief set expansion phase
of the PBVI-SSEA algorithm.*

“Pineau et al. (2006) presented several versions of the basic PBVI algorithm. PBVI-SSEA is the
“standard” version that uses Stochastic Simulation with Exploratory Actions to expand the belief set.

140



5.5. Concentrating Samples By Curvature

After our original publication presenting the reachability metric, Izadi and Pre-
cup (2006) implemented this idea and compared the expected reward of policies
output by PBVI-SSEA using 41 vs. J,, with various values of the p parameter.
Their results showed that both versions eventually converged to a near-optimal
policy, but did not provide any information about relative time performance. More
recent experiments suggest that use of ¢, provides some time performance benefit
on the 7ag benchmark problem (Izadi, private communication).

5.5 Concentrating Samples By Curvature

Our second novel approach to max-planes approximation relies on a transforma-
tion of the belief simplex that spreads out the curvature of V*. We use uniform
sampling in the transformed space, which corresponds to concentrating samples
in high-curvature areas of the original space. We show that the max-norm of the
approximation error is quadratic in the 2-norm sample spacing. Roughly speaking,
this reduces the number of « vectors needed to achieve a given approximation error
from n to \/n.

To simplify our analysis, we will again assume that the convex function of
interest, V, has the domain X = [0, L]%. The smoothing transform is denoted
Z : R? — RY. For any belief b, Z(b) is a vector whose components are Z;(b),
defined according to’

Zi(b) == bV V(B) — k), (5.52)
where each k; is a constant offset

k; .= inf “V(b). 5.53
belirrllt(B) Vi V() ( )

The infimum is bounded under the assumption that o (V) is finite. This offset is
designed to ensure that the value inside the square root is positive.
We use the smoothing transform to define a sample spacing measure

67(B) := maxmin | Z(b) — Z (V)| (5.54)
bEX e

Under §z, distances between points are measured using the 2-norm in the trans-

The uniform spacing theorems discussed in §5.3 were originally presented as part of an argument
that PBVI-SSEA converges.

SHere we find it convenient to refer to elements of the belief vector b using the notation b; in place
of our usual notation b(s).

141



5. Max-Planes Approximation Bounds

formed space. Z magnifies the distance between two points if they have very dif-
ferent subgradients and shrinks the distance if they have similar subgradients. Thus
uniform sampling in the transformed space corresponds to concentrating samples
in regions of the original space where the minimal subgradient is changing quickly,
which one can informally think of as “high-curvature” regions.

Our first result shows that the max-norm approximation error is quadratic in
the 0z sample spacing.

Theorem 5.8. Let V' be a convex function defined over X, let a sample set BCx
be chosen, and let V = max TP, Then

[V = V] < 6%(B). (5.55)

Proof. Choose b € X. We want to bound |V (b) —f/(b) |. Since V is a lower bound,

A

V(b) < V(b). Let b be the sample point from B that is closest to b according to
the 2-norm in the transformed space. Let « = V=V () and o/ = V=V (¥'). Since
o € ', we have V(b) > o - b. Putting the two bounds on V (b) together, we have

V(b) = V(B < V(D) —a - b, (5.56)

Using the convexity of V' and an analogy with the mean value theorem, one
can show that

V) =V®)+b-0b) u (5.57)

for some vector u such that

b-0)-o < (b=V)-u < (b-V) (5.58)
Then

V)y=vVH®)+O-V) u (5.59)
- b=VFH)+(b-V) . (5.60)

Subtracting,
[V (b) = (o - b)| < [(b—0) - (u—a) (5.61)
<|(b—0) - (a—d) (5.62)
< (b — b)) (e — o). (5.63)

In order to relate this to Z, we introduce the following inequality. Let

142



5.5. Concentrating Samples By Curvature

x,7',y,y € RT. Then

(x—2y—v)=ay+2'y —xy — 2y (5.64)
<zy+ 'y — 2/ xy'aly (5.65)
=xy+ a2y — %/M (5.66)
= (Vry — o'y, (5.67)

where (5.65) relies on the arithmetic-geometric means inequality. Applying to each
term in the sum above,

>

V(b)) =V ()] <[V (b) — (o - b)] [by (5.56)] (5.68)
<3| = B (0 — af)| [by (5.63)]  (5.69)
=7 | = W) [(i = ki) — (o} — k)] (5.70)

2
< ( bila; — kq) — b;(a;—kz-)) [by 5.67)] (5.71)

= (Zi(b) — Z;(v)))? [def. of Z;] (5.72)
=[Z(b) - 2|3 (5.73)
< 6%(B). (5.74)

OJ

Next, we use the Jz spacing measure to develop a tighter bound on the num-
ber of a vectors needed to achieve a given approximation error. We are able to
use fewer vectors than with uniform sampling because the approximation error is

quadratic in 0z (B) but only linear in 01(5B). Roughly speaking, the number of
vectors required is reduced from n to \/n.

Theorem 5.9. Let L > 0 be a length scale, d an integer dimensionality, and X =
[0, L)% Let V be a convex function defined over X. Let ¢ > 0 be the maximum
allowable approximation error under the max-norm. Then the number of a vectors
needed is upper bounded by

d
N(V,e) < {;\/ dLO;(VW . (5.75)

143




5. Max-Planes Approximation Bounds

Proof. Let )Y be the image of X under the transform Z. Theorem 5.8 implies that
the number of facets n needed to approximate V' within € is bounded by the number
of 2-norm balls with radius /€ needed to cover ).

There are a number of methods to cover Y which give tighter or looser bounds.
In the interest of developing a closed-form (if not particularly tight) bound, we will
tile Y with a regular grid of hypercubes, then cover ) with balls that circumscribe
the hypercubes.

If a d-hypercube has edge length W, the 2-norm distance from its center to any
point is bounded by the distance to the corners, 17 +/d. In order to circumscribe
the hypercube with a d-hypersphere of radius /€, we need W < 2\/%.

Y is bounded along each dimension 7. Choose b € X. On the low side,
b; > 0and (V; V(b) — k;) > 0, so Z;(b) > 0. On the high side, b; < L and
HV;V(I)) — leoo <o(V),so Z;(b) < \/Lo(V).

To form the regular grid, each dimension is cut at uniform intervals of W into
k pieces, meaning the number n of cells is

n = k¢ (5.76)
d

- ’V\/LO'(V) /W] (5.77)
d

- [ 579

O

We also develop a slightly tighter asymptotic bound using prior work on mini-
mum density covers.

Theorem 5.10. Let X',V € be defined as in Theorem 5.9. As € — 0,

/2
N(V,e) < ZC; <L0£V) > : (5.79)

where g is the volume of the unit ball in R® and 04 is the minimum density of
covering of R¢ with unit balls under the 2-norm.

Remark 5.11. There are elementary closed-form formulas for k4 (Weisstein, 1999).
Various bounds have been provided for 04; refer to Chapter 2 of Conway and
Sloane (1999) for a recent review.

Proof. To derive this bound, we again cover ) with balls of radius /. This time
we are using the minimum-density covering. Lemma 1 of Gruber (1993) showed

144



5.6. Conclusions

that for a Jordan measurable set ./, the minimum number of balls of radius  needed
to cover J as  — 0 follows
1 J
n ~ Yolume(J) (5.80)
79kq/04
Intuitively, one can think of the denominator as the volume of each ball in the
covering, using 6 to correct for overlap.
Y is Jordan measurable with volume at most (Lo (V))%/2, which gives the
stated bound. O

5.5.1 Curvature: Implications for Algorithm Design

We have shown that we can approximate a convex function V' within € using fewer
a vectors if we use tighter sample spacing in high-curvature areas of V' and looser
sample spacing elsewhere.

The reachability spacing approach selected a sample set using only the param-
eter p and the (static) structure of the POMDP. In contrast, the curvature spacing
approach requires knowledge of the value function to be approximated. Unfortu-
nately, if we are trying to approximate the optimal value function V*, we cannot
use curvature sampling to select an ideal sample set prior to calculating V* itself.

However, there is a natural way to integrate curvature sampling into the PBVI-
SSEA algorithm. At any belief set expansion phase, in place of the uniform ¢§;
metric, we can use the d metric induced by the current approximation to the op-
timal value function. Under this approach, the quality of the §; metric (and, in
turn, the sample set) improves throughout execution along with the value function
approximation. Since the size of PBVI-SSEA’s sample set doubles at each expan-
sion phase, samples chosen early on according to a poor spacing metric should be
quickly be outnumbered by better spaced samples chosen later. We have yet to
evaluate this approach experimentally.

5.6 Conclusions

With respect to the commonly used max-planes representation for POMDP value
functions, we developed two new ways to use fewer « vectors to approximate the
optimal value function V* within e. In the first approach, we focused on approxi-
mating V* well in the neighborhood of beliefs that are quickly reachable from the
initial belief by, requiring fewer « vectors in other parts of the belief simplex but
still guaranteeing that policies based on the approximation have small regret. In the
second approach, we found a way to smooth out the curvature of V* so that each

145



5. Max-Planes Approximation Bounds

a vector could effectively cover more volume. Roughly speaking, this approach
reduced the number of « vectors needed from n to \/n.

146



Chapter 6

Heuristic Search

Heuristic search can greatly increase the efficiency of MDP and POMDP solution
algorithms by focusing effort on the most relevant parts of the search graph. This
chapter presents two search strategies, Heuristic Search Value Iteration (HSVI)
and Focused Real-Time Dynamic Programming (FRTDP), that fit into the focused
value iteration framework of Chapter 3. Both HSVI and FRTDP can also be viewed
as variants of the Trial-Based Real-Time Dynamic Programming (RTDP) algo-
rithm (Barto et al., 1995).!

HSVI was developed as part of our first implementation of the focused value
iteration framework, and was originally designed specifically to solve POMDPs.
HSVI differs from RTDP in several ways:

e HSVI gains important benefits from fitting into the focused value iteration
framework. Whereas RTDP maintains only an upper bound, focused value
iteration maintains two-sided bounds on V* that can be used to bound the
regret of the current policy. This provides a natural way to monitor the rate of
convergence so that search can be halted when a desired precision is reached.

e HSVI also uses the two-sided bounds to direct search more effectively, pre-
ferring to visit the states that contribute most to the uncertainty at sg. Updat-
ing those states has the greatest potential to reduce the regret bound.

o If the MDP is discounted, HSVI adjusts how it prioritizes states, using the
discounting to guarantee convergence even when the state space is infinite, as
it is in the belief-MDP representation of a POMDP. (RTDP is not guaranteed
to converge when applied to POMDPs.)

!Software implementations of most of the heuristic search algorithms described in this chap-
ter are freely available as part of the ZMDP software package, which you can download at
http://www.cs.cmu.edu/ trey/zmdp/.

147



6. Heuristic Search

We applied HSVI to several benchmark problems from the MDP and POMDP lit-
erature, comparing its performance to several other heuristic search algorithms.
HSVI failed to converge over most of the MDP problems because they were not
discounted (see §6.5 for a discussion of termination guarantees). However, com-
pared to the state-of-the-art HDP+L algorithm, HSVI required less wallclock time
to achieve the same regret bound over two of the three POMDPs, achieving 10x
speedup in the best case.

FRTDP was developed later based both on RTDP and on our experience with
HSVLI. It differs in that:

o FRTDP, like HSVI, prefers to visit states that contribute to uncertainty at
so. However, FRTDP is less myopic. It uses cached priority information to
avoid fruitlessly revisiting states that resist improvement.

e FRTDP has a maximum depth termination criterion to abort trials that run
too long. This technique, proposed by Barto et al. (1995) but never imple-
mented, helps to cut off fruitless trials in “one-way door” problems where an
irreversible early decision can make it much more difficult to reach a goal.
The maximum depth increases adaptively from trial to trial as the search
progresses.

FRTDP was tested under the same conditions as HSVI. It had the best wallclock
time performance across six of the seven benchmark problems (all four MDPs and
two of the three POMDPs), achieving up to 28x speedup relative to the best prior
algorithm.

RTDP, HSVI, and FRTDP all explore the search graph by repeated trials. A
trial starts at sg and explores forward. At each forward step, the current state
is updated and a successor state is chosen via heuristics for action selection and
outcome selection that vary depending on the search strategy. A trial finishes when
the search strategy’s trial termination criterion is satisfied. In an optional second
phase of the trial called round-trip updating, the search retraces its path, updating
the same states in reverse order in order to propagate information back to so. HSVI
and FRTDP perform round-trip updating, but RTDP does not.

Figure 6.1 shows a trial. Circles are nodes of the search graph. The node
at the top of the graph is the initial state sg. Dark circles are states that satisfy
the search strategy’s trial termination condition (which varies between different
search strategies). Arrows emanating from nodes are actions available to the agent.
Thinner arrows emanating from the action arrows are possible outcomes of each
action.

The thick solid arrow running down the figure shows the states visited and up-
dated during the forward exploration phase of the trial. The corresponding dashed

148



6. Heuristic Search

Figure 6.1: A search strategy trial.

RTDP HSVI FRTDP
Bounds maintained VU only VUand VE VUand VE
Action selection (planning) PVY PVY PVY
Action selection (run-time) PVV PVE PVE
Outcome selection stochastic ~ wtd. excess  wtd. priority
Trial termination goal states excess <0 A <0, max depth
Round-trip updating no yes yes
Convergence conditions R1-R3 HI1-H2 R1-R3

Table 6.1: Comparison of search strategy features

arrow shows the round-trip updating phase of the trial, as performed by HSVI and
FRTDP.

Table 6.1 provides an overview comparison of the search strategies. The rest
of the chapter is organized as follows: §6.1 introduces classes of problems that we
would like our algorithms to solve. §6.2 is a review of RTDP. §§6.3-6.4 present the
HSVI and FRTDP algorithms, respectively. §6.5 analyzes conditions under which
HSVI and FRTDP terminate. §6.6 compares the empirical performance of RTDP,
HSVI, FRTDP, and some other search strategies, as applied to benchmark problems
from the MDP and POMDP literature.

149



6. Heuristic Search

6.1 Problem Classes

The search strategies in this chapter can be applied to any MDP or POMDP, but we
need additional problem structure to guarantee value function bound convergence
and termination. We analyze the search strategies in the context of two classes of
MDPs. The first class we call RTDP-solvable MDPs, which satisfy:

R1. S is finite.

R2. There exists at least one proper policy; that is, a policy that reaches a goal
state s € G from any starting state with probability 1.

R3. Every improper policy incurs infinite cost (that is, infinite negative reward)
for at least one state.’

As the name suggests, these constraints guarantee convergence of the RTDP algo-
rithm (Barto et al., 1995).

In an RTDP-solvable MDP, the agent has a single overriding task whose achieve-
ment is represented by reaching a goal state. Many interesting problems can be ex-
pressed in this form, but not all. For instance, if the problem has several tasks and
the agent must accomplish as many as possible, it is more natural to give the agent
a positive reward for accomplishing each single task, and there may not be any
absorbing goal states. Also, the belief-MDP for a POMDP is not RTDP-solvable
because its state space (that is, the belief space of the POMDP) is infinite.

The second problem class we call discounted finite-branching MDPs, which
satisfy:

H1. The problem is discounted; v < 1.

H2. The problem has a global branching factor j, meaning that from any state
at most j successor states can be reached via any choice of action and any
possible outcome.

The assumption of discounting is not appropriate for every problem; however,
when applicable it is very powerful because it allows the value of a policy to be
calculated to any desired precision while only examining the search graph to finite
depth. This allows us to guarantee convergence of some search strategies even with

*Normally, RTDP-solvable problems are formulated such that all actions outside a goal state incur
a non-zero cost, represented in our notation as a strictly negative reward. This non-zero cost property
implies R3. However, R3 is also guaranteed under the weaker condition that traversing any loop
in the search graph incurs strictly negative reward (leaving open the possibility that certain actions
provide positive reward).

150



6.2. RTDP Review

an infinite state space. Many problems with multiple tasks can be naturally repre-
sented within this class, and the belief-MDP for a discounted POMDP satisfies
H1-H2 with j = | A||O|.

6.2 RTDP Review

The novel search strategies we present later in this chapter can be viewed as vari-
ants of the Real-Time Dynamic Programming (RTDP) algorithm of Barto et al.
(1995). Barto et al. present multiple versions of RTDP; the most relevant ver-
sion for our purposes is a form of Trial-Based RTDP in which s is chosen as the
start state of every trial. Note that Barto et al.’s presentation of RTDP spends con-
siderable time discussing how to plan concurrently with system identification. In
contrast, we are concerned only with off-line planning based on an exact model.

Algorithm 6.1 is an implementation of Trial-Based RTDP using notation com-
patible with our earlier discussion of focused value iteration. Although the struc-
ture of RTDP is broadly similar to focused value iteration, RTDP is not quite an
instance of the algorithm schema because it does not keep a lower bound, and thus
cannot monitor the regret bound as a condition for overall algorithm termination.

RTDP selects actions greedily according to the upper bound, the same approach
used by HSVI and FRTDP (see §6.3.2 for a discussion). Given an action, RTDP’s
outcome selection rule stochastically selects a successor state according to the tran-
sition probabilities in the MDP model. This form of outcome selection has some
good theoretical properties and is attractive due to its extreme simplicity, but it also
means that RTDP often continues fruitlessly visiting states after their value has
already converged. HSVI and FRTDP use more sophisticated outcome selection
rules that try to mitigate this problem.

A state is relevant if it can be reached by at least one optimal policy. Under
conditions R1-R3, RTDP’s V'V value function is guaranteed, with probability 1, to
converge to V* over the set of relevant states. This implies that PVU converges to
an optimal policy with probability 1 (Barto et al., 1995).

RTDP was originally conceived as an algorithm for solving finite discrete MDPs
using a tabular value function representation. Barto et al.’s convergence proof ap-
plies only in that case. Geffner and Bonet (1998) applied RTDP to POMDPs using
a grid-based value function representation for V'V, an approach called RTDP-BEL.
Unfortunately, although RTDP-BEL has been successfully applied to some prob-
lems, it is not guaranteed to converge in general.

As written, our version of RTDP leaves open the choice of representation for
VU. When used to solve POMDPs, it may be combined with any of the represen-
tations discussed in Chapter 4. This implementation of RTDP will be used later

151



6. Heuristic Search

Algorithm 6.1 Real-Time Dynamic Programming (RTDP), a search strategy
(Barto et al., 1995).

: uses implementation <UB> conforming to UPDATABLESIG

1

2:

3: function RTDP() :

4. VY «— <UB>.initialValueFunction()
5:  loop:

6 trialRecurse(sg)

7:

8: function trialRecurse(s) :

9: if s € G return

10 VU — <UB>.update(VU, s)

11:  a* « argmaxg(a® VY)(s)

12: s’ « chooseSuccessorStochastically(s, a*)
13:  trialRecurse(s’)

when we compare experimental performance of different search strategies.

6.3 Heuristic Search Value Iteration (HSVI)

HSVI was developed as part of our first implementation of focused value iteration,
and was originally designed specifically to solve POMDPs. Relative to RTDP,
HSVI uses the two-sided bounds of focused value iteration to guarantee the quality
of its output policy, to more effectively guide search, and to guarantee convergence
over the class of discounted finite-branching MDPs, which includes discounted
POMDPs represented as belief-MDPs.

HSVI is presented in Algorithm 6.2 as a complete algorithm that integrates
heuristic search elements with the generic main loop of focused value iteration.
Unfortunately, this formulation obscures the modularity discussed in Chapter 3,
where we introduced the generic main loop as a separate component that could be
reused with different heuristic search algorithms.

We could have written a functionally equivalent version of HSVI as a separate
module explicitly conforming to the focused value iteration SEARCHSIG interface.

3We should note that in Smith and Simmons (2005), we used the names “HSVI1” and “HSVI2”
to describe different complete implementations of focused value iteration. Both were based on the
HSVI search strategy we describe here, but they used different value function representations for V-
and VU,

152



6.3. Heuristic Search Value Iteration (HSVI)

However, due to the way that state selection is interleaved with value function up-
dates, a modular implementation would have required that either (1) we replace the
recursive implementation of HSVI trials with explicit stack data structures, increas-
ing complexity and hiding the recursive structure, or (2) we use coroutine program
semantics that allow simultaneous interleaving and recursion, but at the cost of
making it harder to translate the implementation into programming languages that
do not support coroutines. In the end we judged that it would be more useful to
present an integrated implementation.

6.3.1 HSVI Bounds Intervals

Bounds intervals are central to HSVI. Recall that (a ® V')(s) is the expected value
of executing action a in state s, then receiving future reward according to the value
V(s') of the successor state s” after the state transition. We define the interval
functions

V(s):=[VE(s), VY(s)] (6.1)
(a@V)(s):=[(a®VE)(s), (a@VY)(s)] (6.2)
HV (s) := [HV(s), HVY(s)] (6.3)
width([Umin, Umax]) *= Umax — Umin- (6.4)

V() is the range of possible values of the state s given the current bounds, (a ®
V)(s) is the range of possible values for s given that action a is selected, HV is
the result of applying the Bellman update to both bounds, and the width() function
measures the width of an interval.

Figure 6.2 graphically illustrates the identity

HV(s) = [mgx(a @ VE)(s), mgx(a @ VY)(s)] (6.5)

by showing, for a particular state s, the intervals (a; @ V)(s) and how they relate
to HV (s).

Recall that when V' is a uniformly improvable lower bound, Theorem 3.16
states that the long-term reward J PV (sq) achieved by the one-step lookahead
policy PV ¥ is at least as good as the value V7 (sq) that V! itself estimates. Since
the long-term reward V*(so) of an optimal policy cannot exceed the upper bound
VU (sg), the regret from executing PV'” rather than an optimal policy cannot ex-
ceed V*(s9) — VE(s0) < VY(sg) — VE(sp). In other words,

regret(PV) < width(V (sg)). (6.6)

153



6. Heuristic Search

1 1
a,®V a,®V a3®f/ HV
Figure 6.2: Relationship between a; ® Vand HV.

Since our overall goal is to return a policy with small regret, HSVI is designed to
prioritize the state updates that will most reduce the bounds interval width(V (sg)).
We now show how this high-level design goal motivates both the action and out-

come selection heuristics.

6.3.2 HSVI Action Selection

During planning, HSVI chooses actions greedily according to the upper bound,
like RTDP. That is, from state s it chooses action a* according to

at = mgx(a @ VY)(s) (6.7)
The idea is that actions that currently seem to perform well are more likely to be
part of an optimal policy; thus selecting such actions will lead HSVI to update
states whose values are relevant to good policies. This is sometimes called the
IE-MAX heuristic (Kaelbling, 1993).

One might ask why HSVI chooses the action that maximizes the upper bound
rather than the lower bound. One way to think about it is that every time HSVI
selects an action a from a state s, it in effect collects two kinds of evidence about
a. The lower bound (@ ® V¥)(s) is a summary of the positive evidence that a
performs well—larger values indicate more positive evidence. The upper bound
(a®VY)(s) is a summary of the negative evidence that a performs poorly—larger
values indicate less negative evidence.

If HSVT’s action selection heuristic tried to maximize the lower bound, it would
tend to choose the same action every time, because further work on an action can

154



6.3. Heuristic Search Value Iteration (HSVI)

only increase the amount of positive evidence about it. By failing to investigate
other actions, it might never discover the optimal action. Instead, HSVI tries to
maximize the upper bound, choosing the action with the smallest amount of neg-
ative evidence, which encourages investigation of untried actions that have little
negative evidence so far.

Another way to see why upper bound action selection helps guarantee conver-
gence is to focus on trying to shrink the uncertainty at the current state s. If the
action a* is chosen to maximize the upper bound, the uncertainty in V(s) after an
update can never be larger than (a* ® V)(s). Figure 6.2 provides some intuition—
note that the interval HV is smaller than a®V (maximum upper bound) but larger
than a3 ® 1% (maximum lower bound). In general,

width(HV (s)) = max(a ® VY)(s) - max(a ® VEy(s) (6.8)
= (a* @ VY)(s) - max(a © VE(s) (6.9)
< (a* @ VY)(s) = (a* @ VE)(s) (6.10)
= width((a* ®@ V)(s)). (6.11)

Thus by choosing action a* and shrinking the bounds interval (a* ® V)(s), HSVI
is guaranteed to eventually shrink the interval HV (s).

Note that while HSVTI’s action selection heuristic maximizes the upper bound
at planning time, the final policy PV * it returns for use at run-time is based on the
lower bound. This is due in part to the fact that PV * has provably small regret

regret(PV) < width(V (sg)). (6.12)

In contrast, the strongest result we are aware of for the quality of the policy PVV
based on the upper bound is

regret(PVV) < 12_77 VU -V, (6.13)

which is weaker both because the leading coefficient is large for weakly discounted
problems (v = 1) and, more importantly, because in order for the result to be useful
we would need width(V (s)) to be small for every reachable state s, not just for
S0-

Of course, if these theoretical bounds on regret are too loose, they may not be
good indicators of the relative performance of PV% and PVY when applied to
typical problems. However, empirical tests in §6.6 demonstrate that, at least in the

cases we studied, PV'” outperforms PV'Y in practice.

155



6. Heuristic Search

6.3.3 HSVI Outcome Selection

Recall that HSVI’s primary goal is to shrink the regret bound by decreasing uncer-
tainty at the initial state sg. Its purpose in updating states during the later parts of
a trial is to have the largest possible impact on uncertainty at states visited earlier
in the trial and thus at sg. Translating this into local decision-making, when mov-
ing forward from a state s, HSVI selects the outcome whose improvement has the
greatest potential to impact the excess uncertainty at s.

The excess uncertainty of a state s encountered at depth d in a trial is defined
to be*

excess(V, s, d) := width(V (s)) — ey ™% (6.14)

The ey~ term is motivated by the way discounting affects the flow of uncertainty
back to so from nodes deeper in the search tree. Suppose that for some state s, all
the successors s’ of s have uncertainty smaller than 4. It turns out that

width(HV (s)) <) T(s,a",s")width(V(s')) (6.15)
<7Y T(s,a*,s)s (6.16)
= ~é. (6.17)

In other words, the uncertainty at the successors s’ “flows back™ to the parent s
after an update, but decreased by the discount factor ~.

One can show inductively that if all the states at depth d have uncertainty at
most ey~ %, then after enough updates to propagate that information back to sq, we
will have width(V (so)) < €, which is the termination condition for the overall al-
gorithm. Thus we have defined excess uncertainty to be any uncertainty above and
beyond the amount ey~¢ that HSVI can permit while still guaranteeing eventual

termination.

From a state s, having selected an action a*, HSVI’s outcome selection heuris-
tic chooses the successor state s* that contributes most to the excess uncertainty of
s

s* == maxT(s,a*,s) excess(V, s’ d+1), (6.18)

s/

*We omit the V' argument to excess() when it is obvious what pair of value function bounds is
being used.

156



6.3. Heuristic Search Value Iteration (HSVI)

which is motivated by the property that, after s is updated,

excess(HV , s,d) < 'yz T(s,a*,s") excess(V,s',d +1). (6.19)

S

In effect, the excess uncertainty at s flows back from its successors s’. In order
to have the largest potential impact on the excess uncertainty at s, HSVI works
on decreasing the uncertainty flowing from the successor s’ that makes the largest
contribution to the sum.

The forward exploration phase of an HSVI trial ends if, d steps into the trial,
HSVI reaches a state s that is finished at depth d, meaning it has no excess uncer-
tainty:

~

excess(V,s,d) <0. (6.20)

The fact that HSVI outcome selection uses the same excess uncertainty heuris-
tic as trial termination is key. It means that the outcome selection heuristic guides
forward exploration away from finished states, keeping HSVI from entering an
endless loop in which each trial visits the same sequence of states ending in the
same finished state.

6.3.4 Running HSVI in Anytime Fashion

The version of HSVI(e) presented above assumes that we know in advance that
we want a policy with regret bounded by e. In practice, however, we often do not
know what a reasonable ¢ is for a given problem—we just want the algorithm to do
the best it can in the available time.

To support this alternate mode of operation, we present a driver routine called
ConvergentHS VI, Algorithm 6.3. ConvergentHSVI repeatedly calls HSVI(e) with
smaller values of the regret bound e so that the regret converges to zero in the limit.
ConvergentHSVI can be used in anytime fashion. If interrupted at the end of any
trial, its resulting policy PV has regret at most V'V (s9) — VL(s0).

The outer loop of ConvergentHSVI adjusts the € argument to HSVI. It is ini-
tialized to ¢y and multiplied by a constant factor k. < 1 every time the previous
value of ¢ is achieved. The parameters k. and ¢g are tunable. Limited empirical
testing suggests that performance is not very sensitive to the parameter values, and
the following give reasonable performance:

ke =0.95 (6.21)
co = ke(Vy (s0) — V" (50)), (6.22)



6. Heuristic Search

Algorithm 6.2 Heuristic Search Value Iteration (HSVI), a search strategy.

1: uses implementation <LLB> conforming to UPDATABLESIG
2: uses implementation <UB> conforming to UPDATABLESIG
3:

4: function HSVI(e) :

s VI «— <LB>.initialValueFunction()

6. VY «— <UB>.initialValueFunction()

7. while VU(sq) — VE(sg) > e

8: trialRecurse(sg, d = 0)

9: return V%

10:

: function trialRecurse(s, d) :

12:  if excess(s,d) <0:

13: return

14:  update(s)

15:  a* « argmaxg(a® VY)(s)

16: 8% « argmaxyepr(s,qr) 1(s,a",s") excess(s’,d + 1)
17:  trialRecurse(s*,d + 1)

18:  update(s)

19:

20: function update(s) :

[\
—_

VI — <LB>.update(VF, s)

22: VU «— <UB>.update(VV,s)
23:

24: function excess(s,d) :

25:  return (VU(s) — VE(s)) — ey

where VOL and VOU are the initial lower and upper bounds.

6.4 Focused Real-Time Dynamic Programming (FRTDP)

FRTDP, Algorithm 6.4, was developed based both on RTDP and on our experi-
ence with HSVI. FRTDP is less myopic than HSVI because its outcome selection
heuristic uses cached priority information to avoid fruitlessly revisiting states that
resist improvement. FRTDP also has a maximum depth termination criterion to
abort trials that run too long, helping it cut off fruitless trials in problems with
“one-way doors”, where an irreversible early decision can make it much more dif-

158



6.4. Focused Real-Time Dynamic Programming (FRTDP)

Algorithm 6.3 ConvergentHS VI, a driver for running HSVI in anytime fashion.

: uses implementation <[LB> conforming to UPDATABLESIG
: uses implementation <UB> conforming to UPDATABLESIG

1
2
3:
4: function ConvergentHSVI() :

s:. VI «— <LB>.initialValueFunction()
6 VU «— <UB>.initialValueFunction()
7

8

9

€ — €
loop:
while VU (sg) — VE(s9) > e
10: trialRecurse(sg, d = 0)
11: € «— kee
12:

13: [other functions defined as for HSVI, see Algorithm 6.2]

ficult to reach a goal.

As with HSVI, when FRTDP is invoked with a non-zero regret bound ¢, the
algorithm focuses on forcing the excess uncertainty at sg to 0. However, FRTDP
uses a slightly different definition of excess uncertainty that does not incorporate
the discount factor.’ The FRTDP excess uncertainty of a state s is

A(s) :==VY(s) = VE(s) —€/2, (6.23)

and a state s is said to be FRTDP-finished if A(s) < 0. (The €/2 term is motivated
later.)

6.4.1 Search Graph Expansion

Recall that HSVI’s heuristics for action and outcome selection were based on rea-
soning about the relationship between excess uncertainty at a state s and the excess
uncertainty of its immediate successors s’. FRTDP uses a less myopic version of
the same logic—it reasons about the relationship between excess uncertainty at a
state and its more distant successors on the fringe of the explicit graph.

>Unfortunately, the convergence proof for FRTDP would not go through with HSVI’s definition
of excess uncertainty for technical reasons. The key difficulty is the fact that the HSVI notion of the
“depth” of a state in the search graph depends on the path followed to reach the state. If a state were
visited via multiple paths with different lengths and FRTDP excess uncertainty depended on depth,
the priority information cached by FRTDP could be inconsistent from trial to trial.

159



6. Heuristic Search

Algorithm 6.4 Focused RTDP (FRTDP), a search strategy.

10:
11:
12:
13:
: function trialRecurse(s, W, d) :
15:
16:
17:
18:
19:
20:
: function update(s) :
22:
23:
24:
25:
26:
27:
28:
29:
30:
: function trackUpdateQuality(q, d) :
32:
33:
34:
: function initNode(s) :
36:
37:
38:
: function A(s) :

14

21

31

35

39

40:

uses implementation <LB> conforming to UPDATABLESIG
uses implementation <UB> conforming to UPDATABLESIG

1
2
3:
4: function FRTDP(e) :
S:
6.
7
8
9

D Do
VL «— <LB>.initialValueFunction()
VY «— <UB> initialValueFunction()
while VY (s0) — VI(sg) > e
(qprev, npreV7 QCurn ncu[‘r) — (07 07 07 O)
trialRecurse(sg, W = 1,d = 0)
if (QCurr/ncurr) +¢ > (Qprev/nprev) then D «— kpD
return V%

(a*,s7,d) « update(s)
trackUpdateQuality (6T, d)

if A(s) <0ord > D then return
trialRecurse(s™, yT'(s,a*, sT)W,d + 1)
update(s)

a* «— argmax,(a® VY)(s)

u «— VY(s)

VI «— <LB>.update(VX,s)

VU « <UB>.update(VY, s)

§ — |VY(s) —ul

po, st — max, argmaxy e (s,ar) VI (s,a*,8") p(s’)
pls) — min(A(s), po)

return (a*,sT,d)

ifd > D/kD then (QCurra ncurr) — (QCurr + q, Newrr + 1)
else (QpreVa nprev) — (Qprev + g, Nprev + 1)

[implicitly called the first time each state s is touched]
p(s) — A(s)

return (VU (s) — VI(s)) —¢/2

160



6.4. Focused Real-Time Dynamic Programming (FRTDP)

Figure 6.3: The explicit graph interior Z and fringe F.

The explicit graph is the explored part of the MDP search graph. It contains all
of the states that the search algorithm has touched so far. Our planning algorithms
assume the presence of a complete MDP model, but they can be applied regardless
of how the model is represented—the MDP search graph may even be infinite. The
only requirement is that the model specifies the initial state sg and provides a way
to expand a state, discovering its immediate successors. The explicit graph can
be thought of as a finite data structure that caches all the information the search
algorithm has learned so far from the model via state expansions.

Expanding a state means generating its outgoing immediate rewards, transition
probabilities, and successor states and adding them to the explicit graph. Further-
more, whenever a new successor state s is added, the search algorithm gets access
to its initial bounds information V' (s).

Explicit graph nodes are either internal nodes, which have already been ex-
panded, or fringe nodes, which have not. Let Z denote the set of internal nodes
and F the set of fringe nodes. Figure 6.3 shows an example explicit graph part-
way through the search process. The dashed arrows emanating from the fringe
nodes represent their outgoing transitions, which are not yet known to the search
algorithm.

We can now recast the problem of designing action and outcome selection
heuristics. Given a particular explicit graph, we want the heuristics to guide for-
ward exploration towards the fringe state whose expansion has the largest potential
impact on the excess uncertainty A(sp) at the initial state s, and thus on the regret

161



6. Heuristic Search

bound of the policy PV’ that FRTDP returns. To do this, we need a framework
for assessing the relative contributions of the fringe states to the uncertainty at sg.

We can start by defining a statistic for the relevance of a state to a particular
policy 7. If we consider the distribution of possible execution traces for 7 starting
from sg and interpret the discount v in terms of trace termination (that is, execution
terminates at any given time step with probability 1 — ~y), then the occupancy,
W™ (sg, ), is the expected number of time steps per execution that 7 spends in
state s before passing beyond the fringe into the unknown part of the graph.

Formally, occupancy is defined as the solution to the following simultaneous
equations (s € Z U F):

W™ (s0,8") = 6(s0,8') +v Y WT(s0,8)T(s,7(s),s) (6.24)
seZT—G

where 6(z,y) = 1 if 2 = y and 0 otherwise.®

Let 7 be a policy that defines what action to take from any internal node in
the search graph. Let 7" be an optimal extension of m, a policy that uses 7 to
select actions so long as execution stays within Z, but uses an optimal policy to
select actions afterwards. We can calculate upper and lower bounds on the quality
Jrt(so) of policy 7 as follows. Define

TEm(s0) = JEm(s0) + > W (s0,5)VE(s) (6.25)
seF

JYn(s0) == T m(s0) + > WT(s0,5)VY(s) (6.26)
seF

Jr(sg) == [TE7(s0), TV (s0)] (6.27)

where JZm(sq) is the expected reward from executing 7 up to the point where it
reaches a fringe node. Then J7 T (sg) must fall in the interval J(so).

By breaking up the contributions to the value of 7 from the known and un-
known parts of the search graph, we can identify where uncertainty in the value of

8If v = 1 and 7 has loops, the occupancy of some states may diverge. However, the occupancy
converges for the problems and policies that interest us.

162



6.4. Focused Real-Time Dynamic Programming (FRTDP)

7+ comes from:

width(J7(s0)) = JYn(so) — JE 7 (s0) (6.28)
= Z W™ (s0,5)VY(s) — Z W™ (s0,5)VE(s) (6.29)
seF seF
=Y W™(so, s)width(V(s)). (6.30)
seF

The uncertainty at sq is seen to be a weighted sum over the fringe states, and the

contribution of each fringe state s is W7 (s, s)width(V (s)), “the occupancy times
the uncertainty”.

We now have a framework for assessing the contribution of a fringe state to
the uncertainty for a particular policy. But recall that our real goal is to shrink the
excess uncertainty A(sg) that drives the regret bound. Intuitively, since V' and
VU are bounds on the value of an optimal policy 7*, we would expect A(sq) to be
related to the occupancy of 7, along the lines of the analysis above. Unfortunately,
FRTDP does not have an optimal policy in hand, since that is exactly what it is
trying to calculate!

However, recall from the discussion of HSVI that

width(HV (s)) < width((a* @ V)(s)) (6.31)
=Y T(s,a",s")width(V(s')). (6.32)

S/

where a* is chosen to optimize (a ® VV)(s). Abstractly, this inequality bounds
the uncertainty about the quality of the (unknown) optimal policy in terms of the
uncertainty about the greedy policy PV'Y that follows the upper bound.

For our analysis of FRTDP, we rely on a relationship that can be viewed as a
transitive extension of (6.32). Assume for the moment that the bounds functions
V'L and VU have been consistently extended from the fringe states into the interior
of the explicit graph, locally satisfying the Bellman equation:

VE(s) = HVE(s) (6.33)
VY (s) = HVY(s), (6.34)

for all s € Z. This means that VV© would be the optimal value function on the
interior of the explicit graph if we had V* = V' on the fringe; a similar relation

163



6. Heuristic Search

holds for VU, Thus, the corresponding one-step lookahead policies are optimal:

JEPVE(s) = max JEn(s) (6.35)

™

JUYPVY(s) = max JYn(s). (6.36)

™

Furthermore, we know that performing one-step lookahead with an optimal value
function achieves expected reward consistent with the value function:

JEPVE(s) = VE(s) (6.37)
JUPVY(s) =VY(s). (6.38)
Putting this together,

width(V (sg)) = VY (s0) — VE(s0) (6.39)

= JYPVY(s9) — JEPVE(s9) (6.40)

< JYPVY(s) — JEPVY (s0) (6.41)

= width(JPVY (s0)) (6.42)

=N WPV (s0, s)width(V (s)). (6.43)

seF

Thus the uncertainty about an optimal policy is related to the uncertainty about
PVY, and (6.43) is analogous to (6.32).

It also implies that if width(V'(s)) < e for all states s € F, then after enough
updates to propagate this information back to sg, we would have width(V (sg)) <
€, which is the overall algorithm termination criterion. Thus one might consider a

state finished when its bounds width drops below e.

However, we suggest that it may be easier to push most of the states on the
fringe to a tighter bound of €/2, leaving some other fringe states to have somewhat
wider bounds and still achieving the target of € at sp. This motivates the €/2 term
in the definition of A(s).

An identity analogous to (6.43) also holds for the excess uncertainty:

A(s) < S WPV (s0,5)A(s), (6.44)
seF

which suggests that the fringe node with greatest potential to impact A(sg) can be

164



6.4. Focused Real-Time Dynamic Programming (FRTDP)

chosen according to

s* = arg max wrvY (s0,8)A(s). (6.45)

seF

In subsequent sections we will use the shorthand WV to refer to W7 Ve,

6.4.2 FRTDP Outcome Selection

FRTDP tries to reach the s* that maximizes (6.45) by choosing the right successor
at each forward step of exploration. Assume for the moment that the search graph
is a tree. Then, at any step of forward exploration, each immediate successor is the
root of a subtree, and the problem reduces to selecting the successor whose subtree
contains s*.

This section defines the priority p(s) of a state s. We show that (1) the priority
can be calculated and cached recursively in parallel with value function updates,
and (2) in the case that the search graph is a tree, if we choose the successor state
according to weighted priority, the corresponding subtree contains s™.

For any immediate successor ', let F* indicate the subset of fringe states con-
tained in the subtree rooted at s’. Then if forward exploration is currently at state
s, the path leading to s* must go through the immediate successor s satisfying

st =arg max max WY (s, s")A(s"). (6.46)
s'EN(s,0) 57 € F'

In a tree there is only one path to reach any given fringe state s”, and if s” € F*',
that path must lead through s and ', leading to the identity

WY (s0,8") = WY (s, )WY (s, )WY (s, 5") (6.47)
= WY(s0,5) W T(s, PVY(s), s WY (s, s"). (6.48)
(6.49)

Define the priority of a state s to be

p(s') == max WY(s,s")A(s"). (6.50)
sEFs

165



6. Heuristic Search

This allows us to decompose (6.46) into
st =arg max max WY (sq,s")A(s") (6.51)
s'eN(s,a) s e Fs'

—arg max max WY (sg,s)[yT(s, PVY(s),s) | WY (s, s")A(s")
s'eN(s,a) s cFs'

(6.52)
—arg max WY (sg,s)[vT(s, PVY(s),s")] max WY(s' s")A(s")
s'eN(s,a) s eFs
(6.53)
= arg I}\lfa(x )WU(S(), ) [yT'(s, PVY(s),s)] p(s) (6.54)
s’eN(s,a
=arg max ~T(s,PVY(s),s)p(s), (6.55)
s'eN(s,a)

where we can drop the factor WY (s, s) in the last step because it does not depend
on s’ and must be strictly positive since s was visited. With similar reasoning about
decomposition one can show that the priority satisfies the recursion

maxXyen(sa) YL (5, PVY(s),s)p(s") s€T
p(s):{ eNs) 1T (s, PVY (s), 8)p(s) 656

A(s) seF.

Every time FRTDP performs a point-based update at s it also calculates and caches
the value of p(s) according to the following slightly modified formula,” which re-
duces to (6.56) when the search graph is a tree but has better properties for general
graphs:

(6.57)
A(s) seF.

p(s) = {min(A(s), maxy e pr(s,a) V1(S, PVY(s),s)p(s") seT
Recall that FRTDP performs round-trip updating as the last phase of each trial,
retracing and updating the states it visited during forward exploration. This ensures
that, under the assumption that the graph is a tree, at the end of each trial all states
in the interior have p(s) values that are up to date with respect to their successors.
Likewise, during forward exploration, when s™ is being selected, all immediate
successors s’ have up-to-date p(s’) values. Thus, despite considering only imme-
diate successors during priority updates and s selection, FRTDP is guaranteed to
reach the fringe state s* that globally maximizes (6.45).
However, in general graphs, FRTDP forward exploration is no longer guaran-

"In practice, priority values can be very small. Our implementation of FRTDP calculates
log(p(s)) rather than p(s) in order to avoid floating-point underflow.

166



6.4. Focused Real-Time Dynamic Programming (FRTDP)

teed to reach s*, for two main reasons:

1. WY (sp,s") is the expected number of times execution reaches s, adding
up the likelihood over all possible paths from sy to s”. Calculating p(s)
according to the recursion (6.57) in effect prioritizes each fringe state s”
according to the likelihood of the single most likely path to s” .

In a tree the total occupancy and single-path occupancy are equal. In a gen-
eral graph, especially one with a large amount of outcome uncertainty, the
occupancy of a state deep in the search graph is likely to be spread over an ex-
ponential number of distinct paths, making the single-path occupancy much
smaller than the total. However, we expect that in most problems drawn from
real applications the same fringe states should tend to have high occupancy
according to both measures, even if the measures give very different values
numerically.

2. In a general graph, some p(s) values may not be up to date with respect to
their successors at the end of the trial. This is because a single state up-
dated during forward exploration may have many immediate predecessors,
and round-trip updating visits only the predecessors that were on the path
followed by forward exploration. However, this type of inconsistency is typi-
cally temporary, as the other predecessors are visited and have their priorities
updated during later trials.

Thus, when FRTDP uses local priority calculations to explore general graphs
it is no longer guaranteed to reach the highest impact fringe state s*, but its heuris-
tic choices are still likely to be reasonable. Furthermore, it is still guaranteed to
converge (see §6.5.2).

6.4.3 Adaptive Maximum Depth Termination

With the excess uncertainty trial termination alone, FRTDP is a usable search algo-
rithm. However, as with RTDP, poor outcome selection early in a trial could lead
into a quagmire of irrelevant states that takes a long time to escape.

FRTDP’s adaptive maximum depth (AMD) trial termination criterion mitigates
this problem by cutting off long trials. FRTDP maintains a current maximum depth
D. A trial is terminated if it reaches depth d > D. FRTDP initializes D to a
small value Dy, and increases it for subsequent trials. The idea is to avoid over-
committing to long trials early on, but retain the ability to go deeper in later trials,
in case there are relevant states deeper in the search graph.

FRTDP performance for any particular problem depends on how D is adjusted,
so it is important that whatever technique is used be relatively robust across prob-

167



6. Heuristic Search

RTDP-solvable Discounted finite-branching
RTDP converges, no rate specified probably fails in some cases
HSVI known to fail in some cases term., regret < ¢, time bound

FRTDP-AMD term., regret < €, no time bound probably fails in some cases

Table 6.2: Search strategy termination conditions

lems without manual parameter tuning. We chose to adjust D adaptively, using
trial statistics as feedback. After each trial, FRTDP chooses whether to keep the
current value of D or to increase it, multiplying by a factor of kp > 1.

The feedback mechanism is fairly ad hoc. Each update in a trial is given an
update quality score ¢ = W that is intended to reflect how useful the update was.
6 measures how much the update changed the upper bound value V'V (s).8 W is a
single-path estimate of the occupancy of the state being updated under the current
greedy policy. After each trial, D is increased by default, but remains the same if
the average update quality near the end of the trial (d > D/kp) is smaller than the
average in the earlier part of the trial, with the difference exceeding a small margin
of error ¢ > 0.° Refer to the pseudo-code of Algorithm 6.4 for details. We used
the parameter values Dy = 10, kp = 1.1, and ¢ = 10~ for all the experiments
reported here.

6.5 Theoretical Results

Although they were presented as integrated implementations including both heuris-
tic search state selection and a main loop, the HSVI and FRTDP algorithms can be
viewed as heuristic search modules fitting into the focused value iteration algo-
rithm schema. Thus for both algorithms Theorem 3.30 applies. If the algorithm
terminates, its returned policy PV % has regret bounded to at most e.

The rest of this section is devoted to analyzing the conditions required for HSVI
and FRTDP termination. The results are summarized in Table 6.2. Note that the
algorithms have somewhat different notions of termination and convergence.

RTDP is designed to be run as an anytime algorithm. Applied to an RTDP-

8The change in the regret could also be used, but the change in the upper bound is slightly faster
to calculate.

The version of AMD presented in Smith and Simmons (2006) did not include the margin of
error (, in effect setting ¢ = 0. We now use a small positive value for ¢ to ensure that the maximum
depth continues to increase in near-equilibrium situations where the average update quality is very
small throughout the run and round-off may be an issue. This minor change does not appear to affect
performance in practice.

168



6.5. Theoretical Results

solvable MDP, its value function converges to V* over the subset of relevant states,
but the convergence proof in Barto et al. (1995) does not estimate the rate of con-
vergence, nor is there a built-in way to monitor convergence during execution so
that the algorithm can be terminated when it reaches a desired precision.

In contrast, HSVI and FRTDP include built-in monitoring of convergence and
terminate when the regret of the returned policy is bounded to a specified €. In
addition, our proof of HSVI convergence for discounted finite-branching problems
provides an a priori upper bound on the number of updates required for the regret
bound to reach a particular precision e.

6.5.1 HSVI Termination

The following analysis of HSVI leads up to the main result, Theorem 6.8, which
shows that HSVI(e) terminates in bounded time when applied to a discounted
finite-branching problem. Theorem 6.9 is a corresponding negative result, showing
that HSVI is not guaranteed to terminate when applied to an undiscounted RTDP-
solvable problem.

Lemma 6.1. Let K be a strong point-based update operator, let VF and VY be
uniformly improvable value functions, and let a* = arg max,(a ® VY)(s). Then

width(K,V(s)) <> T(s,a*,s) width(V(s)). (6.58)

S/

Proof. We have

width(K,V (s)) (6.59)
= width(HV (s)) [K is strong] (6.60)
= HVY(s) — HVE(s) [def. of HV'] (6.61)
= max(a ® VY)(s) - max(a ® vE(s) [def. of H] (6.62)
=(a*@VY)(s) - max(a ® VvE(s) [def. of a*] (6.63)
< (a* @ VY)(s) - (a* @ VE)(s) (6.64)
=7 T(s,a*,s) (VV(s) = V() [def. of ®] (6.65)
=7 T(s,a*,s) width(V(s')). [def. of V] (6.66)

O

169



6. Heuristic Search

Lemma 6.2. Under the conditions of Lemma 6.1,

excess(KsV, s,d) < ’)’ZT(S, a*, s exceSS(V, s’ d+1) (6.67)

S

Proof. We have

excess(K,V, s,d) (6.68)
= width(K,V (s)) — ey @ [def. of excess]  (6.69)
<5 ZT(S, a*, ") width(V (")) — ey~ [Lemma 6.1] (6.70)
=7y Z T(s,a*,s") width(V (s')) — ey(dﬂ)] (6.71)

=) T(sa",s) [width(V(s’)) _ 67—(d+1)}

ZT(s,a*, s') = 1]
(6.72)
= Z T(s,a*,s') excess(V,s',d+1). [def. of excess]  (6.73)

8/

O]

Lemma 6.3. Under the conditions of Lemma 6.1, if all successors s' € N (s,a*)
are finished at depth d + 1, then after applying a strong update operator K, state
s will be finished at depth d.

Proof. We have

excess(KSV, s,d) (6.74)
<~ Z T(s,a*,s") - excess(V, s, d+ 1) [Lemma 6.2] (6.75)
<~ Z T(s,a*,s")-0 [def. of finished] (6.76)
=0. S (6.77)

O

Lemma 6.4. HSVI always chooses an unfinished successor if there is one. Specif-
ically, if HSVI encounters a state s at depth d and there is a state ' € N (s,a*)

170



6.5. Theoretical Results

that is not finished at depth d + 1, then the successor
s* := argmax T (s,a*,s') excess(V,s',d + 1) (6.78)
S/
chosen by HSVI is not finished at depth d + 1.

Proof. The heuristic maximized when s* is chosen is positive only for successor
states that are unfinished at depth d + 1. O

Lemma 6.5. Let € > 0 and let HSVI(e) be applied to a problem satisfying condi-
tions HI-H2. Let V¥, VU be bounded value functions. Then all states are finished
at every depth d > dy,ax, where

dmax = [log, (e/ [VV = V|| ). (6.79)

Proof. Let sbe astate, let d > dp,ax, and define the shorthand W = H yvU _yL HOO
We have

d> [log, (¢/W)] (6.80)
d > log, (e/W) (6.81)

7d <e/W [z — ~" monotone decreasing] (6.82)

W—ey <0 (6.83)

width(V (s)) —ey 4 <0 [W = max width(V (s))] (6.84)
excess(f/, s,d) <0. [def. of excess] (6.85)

O

Corollary 6.6. When HSVI(¢) is applied under the conditions of Lemma 6.5, every
HSVI trial reaches a finished state and terminates after visiting at most dpx states.
Each state visited in the trial is updated once during forward exploration and again
during round-trip updating, so a trial requires at most 2d,.x point-based updates.

Lemma 6.7. If the HSVI main loop has not yet terminated, then executing a com-
plete HSVI trial will cause at least one state that is not finished to become finished.
Specifically, for some d, a state that was not finished at depth d will become finished
at depth d.

Proof. Suppose HSVI has not yet terminated and a trial is executed. Let the final
two states encountered during forward exploration be s and s’, encountered at depth
d and d + 1, respectively. Because forward exploration terminated at s’ but did not

171



6. Heuristic Search

terminate at s, it must be the case that before the trial s’ was finished at depth d + 1
but s was not finished at depth d.

Because the finished state s’ was chosen by the outcome selection heuristic,
we can infer that all successors in NV (s, a*) were finished at depth d + 1, since by
Lemma 6.4 HSVI always chooses an unfinished successor if there is one. Applying
Lemma 6.3, state s will be finished at depth d after it is updated.

Thus executing the trial causes state s, which was not finished at depth d, to
become finished at depth d. O

Theorem 6.8. Let ¢ > 0 and let HSVI(€) be applied to an MDP satisfying HI-H?2
with branching factor j. Let the initial bounds VOL , VOU be globally bounded and
uniformly improvable. Let

dinax = [log, (¢/ V5" = V5[] )1- (6.86)

as in Lemma 6.5, and let

jd+1 -1

nodeCount(j,d) = ——T (6.87)
j—
Then HSVI will terminate after at most nodeCount(j, dmax — 1) trials, each of

which involves at most 2d,.x point-based updates.

Proof. Begin with the case that the search graph is a tree, meaning there is only
one path to reach any given state, and each state has a fixed depth in the tree. In
that case, one can say that a state s that appears at fixed depth d is “finished” as
shorthand for “finished at depth d”.

Applying Lemma 6.5, only states that appear at depth d < dax can be initially
unfinished. Since the tree has branching factor j, the number of states at depth d is
J 4 and the total number of states at all depths up to dpax is

dmax_1

d
max _ |
nodeCount(j, dmax — 1) = > j%= !
d=0

jT' (6.88)
Lemma 6.7 states that at least one unfinished state becomes finished after each trial.
Because the value function bounds are uniformly improvable and are modified only
by point-based updates, the bounds interval at each state can only grow narrower
and finished states never become unfinished. Thus the initial state must become
finished after at most nodeCount(j, dyax — 1) trials, causing HSVI to terminate.
In the general case the search graph may not be a tree, but this can only help
HSVI. The formula for nodeCount(j, dyax — 1) counts the number of paths through

172



6.5. Theoretical Results

(goal)

Figure 6.4: An undiscounted MDP which causes HSVI to enter an infinite loop.

the graph that start at sy and have length d < dp,.x. If the graph is a tree, each
distinct path leads to a distinct state, but in a general graph distinct paths may lead
to the same state, effectively reducing the total number of states that need to be
finished. 0

Theorem 6.9. In the absence of conditions HI-H2, HSVI trials are not guaranteed
to terminate, even if the RTDP convergence conditions RI-R3 are met, ¢ > 0, and
the initial bounds V', V'V are globally bounded and uniformly improvable.

Proof. We provide a specific MDP and initial bounds satisfying the conditions of
the theorem, and show that a trial of HSVI will fall into an infinite loop.

Consider an undiscounted MDP with four states sq, ..., s3 and one action a,
shown in Figure 6.4. Let sg be the initial state and s3 be a goal state. For every
non-goal state s, the action a incurs cost R(s,a) = —1. From state s, the possible
transitions are 7'(so, a, s1) = 0.9 and T'(sp, a, s2) = 0.1. From state s;, the pos-
sible transitions are 7'(s1, a, so) = 0.9 and T'(s1, a, s2) = 0.1. From state so, the
only possible transition is 7'(s2, a, s3) = 1.

The initial bounds are set up as follows. Let V(so) = V(s;) = [—12,—10],
V(s2) = [—2,0], and V(s3) = [0,0]. One can verify that updating state s, would
cause its bounds to collapse to [—1, —1], but updating any other single state would
leave its bounds unchanged. In no case would an update weaken the lower or upper
bound, so these bounds are uniformly improvable.

We show that a trial of HSVI(e) with e = 0.1 beginning at the initial state s
will fall into an infinite loop between states sg and s;. Since neither state is finished
and an update at either leaves the bounds unchanged, we only need to show that,
given the specified bounds, forward exploration from state sg will visit state sy,
and vice versa.

173



6. Heuristic Search

For this MDP, HSVT’s action selection heuristic is irrelevant since the MDP has
only one action. From state sg, only states s; and so are reachable. Since v = 1,
excess(V, s, d) is independent of d. We have

T(so,a, s1) =0.9 (6.89)
excess(V, s1,d) = (=10 — (=12)) = 0.1 =1.9 (6.90)
T(s ,52) = 0.1 (6.91)
excess(V, sg,d) = (0 — (=2)) — 0.1 = 1.9, (6.92)

so from state sy, the outcome selection heuristic based on weighted excess un-
certainty will prefer state s; to sp. States sg and s; are symmetric, so the same
argument shows that from state s; forward exploration will choose sg. O

6.5.2 FRTDP Termination

This section discusses FRTDP termination. In Smith and Simmons (2006), we
claimed that FRTDP was guaranteed to converge over the class of RTDP-solvable
MDPs. Unfortunately, we later realized that this result was somewhat overstated.
More detailed study showed that there was a gap in our analysis of the adaptive
maximum depth (AMD) termination criterion. At this point, we can show guaran-
teed termination only when maximum depth termination is not used. We call this
variant FRTDP-AMD, as opposed to the usual variant FRTDP+AMD. Nonethe-
less, we continue to conjecture (though we cannot yet prove) that FRTDP+AMD
always converges.

The results in this section build up to Theorem 6.16, which shows that FRTDP-
AMD terminates when applied to an RTDP-solvable problem. The section ends
with a discussion of the gap that remains in proving termination for FRTDP+AMD.

Lemma 6.10. Under the conditions of Lemma 6.1, after an update at s,

s) < ’yZT(s,a*, s") A(s) (6.93)

174



6.5. Theoretical Results

Proof. We have

A(s) (6.94)
= width(K,V (s)) — €/2 [def. of A] (6.95)
<) T(s,a*,s') width(V(s')) — ¢/2 [Lemma 6.1] (6.96)
<q | ) T(s,a, ) width(V(s)) — 6/2] (6.97)

= Y T(s,at o) [width(V(s)) - ¢/2]

> T(s,a*,s') = 1] (6.98)

=7 T(s,a*, ') A(s). [def. of A] (6.99)

O

Lemma 6.11. Under the conditions of Lemma 6.1, if all successors s' € N (s, a*)
are FRTDP-finished, then after applying a strong update operator K, state s will
be FRTDP-finished.

Proof. Parallels the proof of the corresponding result for HSVI, Lemma 6.3, re-
placing “finished” with “FRTDP-finished”. O

Lemma 6.12. The priority of a state s is negative if and only if s is FRTDP-
finished.

Proof. To prove equivalence we must prove that the implication is true in both
directions:

1. A(s) < 0implies p(s) < 0.

The value p(s) can be set in either of two ways:

p(s) < min(A(s), po) [Alg. 6.4 line 28] (6.100)
p(s) — A(s). [Alg. 6.4 line 37] (6.101)

In both cases, p(s) < A(s), so the implication holds.

2. p(s) < 0implies A(s) < 0.

Proof by backwards induction from the frontier. When a state s on the fron-
tier is first touched, the implication holds because p(s) = A(s).

175



6. Heuristic Search

Given an interior state s, the induction hypothesis is that the implication
holds for every successor s € N (s,a*). Suppose p(s) < 0 after s is up-
dated. From FRTDP lines 27,28 we see that p(s) was set by

p(s) < min(A(s),arg max ~T(s,a*,s")p(s)). (6.102)
s’eN(s,a*)
If A(s) is the smaller argument to min, then A(s) = p(s) < 0 and the
implication holds.

Otherwise the second argument to min is equal to p(s) and is therefore nega-
tive. Since « and the 7'(+) transition probabilities are strictly positive, we find
that all the p(s’) values must likewise be negative. By the induction hypoth-
esis, all the successors must satisfy A(s’) < 0, so applying Lemma 6.11,
after the update A(s) < 0 and the implication holds.

O]

Lemma 6.13. FRTDP always chooses an FRTDP-unfinished successor if there is
one. Specifically, if FRTDP encounters a state s and there is a state s' € N (s, a*)
that is FRTDP-unfinished, then the successor

sT = arg max T'(s,a", s p(s) (6.103)

chosen by FRTDP is FRTDP-unfinished.

Proof. Applying Lemma 6.12, the heuristic maximized when s is chosen is pos-
itive only for successor states that are FRTDP-unfinished. 0

Lemma 6.14. If the main loop has not yet terminated, then executing a complete
trial of FRTDP-AMD(e€) causes at least one state that was not FRTDP-finished to
become FRTDP-finished.

Proof. Parallels the proof of the corresponding result for HSVI, Lemma 6.7. [

Lemma 6.15. Let € > 0 and let FRTDP-AMD(€) be applied to an MDP satisfying
RTDP convergence conditions RI-R3. Suppose the initial bounds VOL, VOU are
uniformly improvable. Then every trial terminates.

Proof. Proof by contradiction. Suppose there is a trial that never ends. Let ) =
{s0, a0, $1,0a1, ...} be the sequence of states and actions chosen by FRTDP for-
ward exploration.

Since § is finite by R1 but ) is infinite, some subset ST C S of the states
must appear infinitely often in ). Furthermore, for each state s € S’, some subset
U(s) C A of the actions must be applied from state s infinitely often in ).

176



6.5. Theoretical Results

States not in S’ appear only finitely often in ), so after some number of steps
all their appearances must be exhausted. Similarly, after some number of steps all
appearances of actions a; & U/(s;) must be exhausted. Therefore, we can find a
time 7" such that for all t > T, s; € S” and a; € U/(sy).

Since FRTDP forward exploration terminates on reaching an FRTDP-finished
state and all goal states are FRTDP-finished, there must not be any goal states in
S’. However, by R2 there is a proper policy, so there must be at least one “escape
route” that leads out of S’ and eventually reaches a goal. In other words, there
must be states s, € S, Sy & S’ and an action a,, such that T(s,, a, sy) > 0.

For at least one of these escape routes, the action a, must be chosen infinitely
often from s,. Otherwise, forward exploration would be selecting actions accord-
ing to a policy with no chance of reaching a goal; that is, an improper policy.
Applying R3, the improper policy would incur infinite cost for at least one state,
and the V'V () values for states s € ST would diverge to —oo. But this contradicts
the invariant VY (s) > V*(s), which is guaranteed by the fact that V'V is uniformly
improvable and modified only by conservative updates.

Thus there must be s;, a;, s, defined as above such that the escape route
action ay is chosen infinitely often from s,. The rest of the proof analyzes FRTDP
outcome selection to show that under our earlier assumption that exploration never
escapes ST (meaning outcome sy i never chosen), we arrive at a contradiction.

Define p;(s) to be the FRTDP priority of state s at time ¢, and define the total
priority

Fr=>" pis). (6.104)

sesS!
At time ¢, FRTDP updates the priority of s; according to'?
pe1(st) = YT (8¢, e, St41)pe(Se41)- (6.105)
It follows that
Frpn = Fy — pi(st) + 9T (st, at, st+1)pe(Se41).- (6.106)
Regrouping terms to facilitate cancellation, define
Gy = Fy — pi(sy). (6.107)

The behavior of G; depends on whether s; = s;11. If so, G441 = G. If not, since

!"Note that although most of the complexity in this proof comes from making it work in the
undiscounted case (y = 1), the argument goes through unmodified for discounted problems.

177



6. Heuristic Search

state s¢41 is not updated at time ¢, we have p;11(S¢+1) = pr(s¢41) and

Git1 = Fip1 — pry1(se41) (6.108)
= Fiy1 — pie(St+1) (6.109)
= Fy — pi(s¢) + T (¢, a1, Se41)pe(Se11) — pe(Se41) (6.110)
= Gy + T (¢, a1, S¢41)Pe(St41) — Pe(St41) (6.111)
=Gy — (1 =T (s¢,at, Se41))Pe(St41)- (6.112)

Since priorities are positive for FRTDP-unfinished states, we see that G; monoton-
ically decreases.

Suppose for some ¢ > T and some state s* € S, s* # s,, we have s; = s,
at = ag, and s;41 = s*. Define § = 1 — T (s, ag, s*). T(sz, az, sy) > 0 implies
0 > 0. Since FRTDP outcome selection prefers s* to s,, we must have

T(sx,az,s*)pt(s*) > T<3x;ax7sy)pt(3y) (61]3)
T(Sz, Az, Sy)

) > R . 114

pt(s ) = T(Sx,ax,s*)pt(sy) (6 )

But s, ¢ S, so s, is not updated after time 7" and its priority p;(sy) = pr(sy)
remains constant. Putting it all together,

Gy = Gy — (1 =T (54, a4, 5¢41))pe(St41) (6.115)
=Gt — (1 =T (52, az,5"))pe(s") (6.116)
= Gt — 5pt(s*) (6117)
T(3x7 Qg Sy)
< - e arEAY .
<Gy (5T(Sx,az’8*)pT(8y) (6.118)

Thus, each time the sequence s,, a,, s* appears in ) at ¢t > T', GG; decreases by at
least the constant value in the second term of (6.118), which is strictly greater than
ZEeTO0.

The rest of the argument breaks down into two cases.

1. If there are at least two states in S, there must be a state s* # s, as above
such that the sequence s, a,,s* appears infinitely frequently in ). This
would imply that the modified total priority G; diverges to —oo, which is
impossible, so we have reached a contradiction.

2. In the simpler case where there is only one state s, € S’, one can verify that
pt(sz) shrinks exponentially until it drops below zero, leading to an escape
from S’ and a contradiction.

178



6.5. Theoretical Results

O]

Theorem 6.16. Let € > 0 and let FRTDP-AMD (€) be applied to an MDP satisfying
RTDP convergence conditions RI-R3. Suppose the initial bounds VOL, VOU are
uniformly improvable. Then FRTDP-AMD ¢€) terminates after at most |S| trials.

Proof. By Lemma 6.15, every trial terminates. By Lemma 6.14, each trial causes at
least one state that was not FRTDP-finished to become FRTDP-finished. Therefore
it takes at most |S]| trials to FRTDP-finish all the states. When the initial state s is
FRTDP-finished, the overall algorithm terminates. O

Lemma 6.17. Using FRTDP+AMD under the conditions of Theorem 6.16, the
maximum depth value D increases without bound as long as FRTDP+AMD con-
tinues running.

Proof. AMD increases D unless, at the end of the trial, the average value of W9
over the “shallow states” near the beginning of the trial (d < D/kp) exceeds the
average over deep states later in the trial by at least ¢.

Both W and § are always positive, so the average 1§ over the deep states is
at least zero, meaning that in order for D not to be increased, the average W ¢ over
the shallow states must be at least (. Since the estimated occupancy W for any
state is always less than 1, this implies that the average ¢ over the shallow states
must be at least ¢, and thus at least one of the shallow states must have § > (.

But for any state s, § measures the decrease in VU (s) caused by updating s.
Since V'V is uniformly improvable, V¥ (s) monotonically decreases and is boun-
ded below by V*(s). This means the number of times s can have have a decrease
& > ( is bounded by

Vi (s) = V*(s)

C Y
where V(U (s) is the initial upper bound at s. In turn, the total number of times that
a decrease 0 > ( can occur is bounded by

n(s) = (6.119)

N =) n(s), (6.120)

seS

which is finite since S is finite. Thus FRTDP+AMD can perform at most N trials
without increasing the maximum depth D. O

Conjecture 6.18. Under the conditions of Theorem 6.16 FRTDP+AMD is guar-
anteed to terminate.

179



6. Heuristic Search

Proof sketch. FRTDP+AMD trials fall into two classes: normally terminated trials
that end because A(s) < 0, and AMD-terminated trials that end because d > D.
By Lemma 6.14, every normally terminated trial causes at least one state to become
FRTDP-finished. However, AMD-terminated trials do not necessarily finish any
states. Therefore it suffices to show that it is impossible to have an infinite number
of consecutive AMD-terminated trials.

Lemma 6.15 showed that when AMD is not used, every trial eventually termi-
nates. However, it does not say anything about the maximum number of states a
trial can visit. Without this information we cannot tell whether trials will be AMD
terminated or normally terminated.

Lemma 6.17 showed that the current maximum depth D increases without
bound as long as FRTDP+AMD continues running. Intuitively, this suggests that
after enough trials the maximum depth D will eventually surpass the depth at which
an FRTDP-finished state would be encountered, triggering normal termination.

The only alternative is that successive AMD-terminated trials modify the bounds
values in such a way that the depth at which normal termination would occur also
grows without bound. We conjecture that this is impossible, and in particular that
more careful bookkeeping in Lemma 6.15 would yield a bound on the maximum
possible depth a trial can reach before it terminates normally—specifically, a single
bound that applies to all trials.

If this conjecture holds, as D increases from trial to trial, eventually it would
exceed the maximum depth for normal termination. From that point on all trials
would be normally terminated, so the behavior of FRTDP+AMD would be identi-
cal to that of FRTDP-AMD and it would terminate by Theorem 6.16. O

6.6 Experimental Results

We evaluated the performance of the various search strategies as applied to bench-
mark problems from the MDP and POMDP literature. Both HSVI and FRTDP
showed substantial performance improvements over prior state-of-the-art algorithms
with respect to some of the benchmark problems.

6.6.1 MDP Results

Our MDP performance evaluation used problems drawn from the popular racetrack
discrete MDP domain of Barto et al. (1995). Instances of racetrack are RTDP-
solvable, so FRTDP should terminate, and HSVI may not.

States of racetrack are integer vectors in the form (z, y, &, §) that represent the
discrete position and speed of the car in a 2D grid. The actions available to the car

180



6.6. Experimental Results

are integer accelerations (i, §j) where both & and §j are drawn from {—1,0,1}. The
car starts in one of a set of possible start states. The goal is to maneuver the car into
one of a set of goal states. Some cells in the grid are marked as obstacles; if the
car’s path intersects one of these cells, it is reset back to one of the start states with
zero velocity. Uncertainty in this problem comes from “skidding”. Each time the
agent takes an acceleration action, with probability p the car skids: the commanded
action is replaced with (z, §) = (0, 0).

Because HSVI and FRTDP focus on outcome selection, we also wanted to
study increasing the amount of uncertainty in the problem. We did this by in-
creasing the number of possible outcomes from an error. We call this the “wind”
problem variant (marked by adding a suffix of —w). In the wind variant, with prob-
ability p = 0.1 an additional acceleration is added to the commanded acceleration.
The additional acceleration is drawn from a uniform distribution over 8 possible
values: {(—1,-1), (-1,0), (-1,1), (0,—1), (0,1), (1,-1), (1,0), (1,1)}. The
idea is that instead of skidding, a “gust of wind” provides additional acceleration
in a random direction.

We selected two racetrack problems whose maps have been published:
large-b from Barto et al. (1995) and large—-ring from Bonet and Geffner
(2003b). With two versions (normal and “wind”) for each problem, our results
cover a total of four problems.

We selected three heuristic search algorithms to compare with HSVI and FRTDP:
RTDP, LRTDP, and HDP. In addition, we implemented a modified version of HDP
that maintains a lower bound and uses that as the basis for its output policy. We
call this algorithm HDP+L.

Following Bonet and Geffner (2003b), all algorithms were provided with the
same initial upper bound VOU , calculated by a domain-independent relaxation in
which the best possible outcome of any action is assumed to always occur. For-
mally, the Bellman update is replaced by

V(s) < max |R(s,a) +v max V(s) (6.121)
a s'eN(s,a)

The time required to calculate VU is not included in the reported wallclock times,
since it is the same for all search strategies. However, we do include the time re-
quired to expand the transition dynamics for each state the first time it was updated
by the search strategy; this expansion included checking for collisions with the
walls.

There is no trivial way to calculate a useful uniformly improvable lower bound
for a racetrack problem. See McMahan et al. (2005) for discussion of of a general
technique for efficiently calculating an informative lower bound. For convenience,

181



6. Heuristic Search

rather than implementing this general technique, we manually specified Vi (s) =
—1000, which is a gross underestimate of the actual V*(s) values for the specific
problem instances we used.

Our experiments were run on a 3.2 GHz Pentium-4 processor with 1 GB of
RAM. We implemented all search strategies in C++. We applied each search strat-
egy to each racetrack instance, running until one of two conditions occurred, either
(1) approximately 100 seconds of wallclock time elapsed or (2) for strategies that
have a way to monitor regret, the regret dropped below € = 1073,

Figures 6.5 and 6.6 report progress vs. wallclock time for each combination
of problem and search strategy. Each column is devoted to one of the problems.
The top frame of each column plots the progress of the upper bound value V'V ()
and the middle frame plots the lower bound V¥ (sq) for those search strategies that
maintain a lower bound (HDP+L, HSVI, and FRTDP).

The bottom frame plots the progress of the mean reward J7(sg) received by
executing the best policy so far. The policy used is PV for search strategies
that keep two-sided bounds (HDP+L, HSVI, FRTDP), or PVVU for those that keep
only the upper bound (RTDP, LRTDP, HDP). Each data point in the J7(sg) plots
was generated by interrupting the algorithm and taking the mean total discounted
reward of its current policy over 10* simulation trials. Each simulation trial was
terminated after at most 251 steps if the goal had not been reached. The approxi-
mate size of the 95% confidence intervals for these estimates is provided in the title
of the plot.

For all but one of the racetrack instances (the exception was large—ring),
HSVI failed to terminate because one of its trials entered an apparently infinite
loop. We handled this by plotting any data points gathered up to the point where
HSVI entered its final trial. Plots for other algorithms generally ended before 100
seconds elapsed because they achieved the regret bound ¢ = 1073, RTDP is the
exception as it does not have a built-in way to monitor the regret bound (and it
usually converged more slowly in any case).

These plots are large data sets that we would like to reduce to a few scores
that we can use to rank performance. Optimal MDP planning is usually defined as
optimizing the true policy quality J(sg) as estimated in the bottom frame plots,
so the first idea for scoring is to somehow summarize the bottom frame.

However, in a real application, we might require not only a good policy but
a guaranteed good policy, in which case it may not be particularly helpful for
the policy to achieve high J(sg) before the quality guarantee “catches up”—the
algorithm would need to continue until it had a strong guarantee in any case.

Furthermore, in ranking algorithms we prefer to report the relative amount of
time required to achieve a fixed quality, which is easy to understand across multiple
problems, rather than the relative quality achieved at a fixed time, which is more

182



6.6. Experimental Results

problem-specific since the magnitude of difference in quality that constitutes an
“important” change is subjective and varies according to the problem.

Calculating the relative amount of time required to achieve a fixed quality in
effect means running a horizontal line across the graph and reading off the time
value where the horizontal intersects the quality plot for each algorithm.

Unfortunately, this is problematic for the Jm(sp) vs. time plots, which are in
general not invertible functions. Quality of the current policy can increase and
decrease erratically as the algorithm progresses, and is measured by a noisy sam-
pling process. Depending on the method used to calculate the point of intersection,
the reported time could be confounded by changes in both the precision of policy
quality measurements and the frequency at which they are taken.

For these reasons, our reduced scores instead focus on the performance with
respect to the regret bound width(V (sg)), which is invertible since it decreases
monotonically. In order to include algorithms which do not maintain a lower
bound, we also calculate scores based on the monotonically decreasing upper bound
VU (sp). After discussing these reduced scores we will look at cases where their
implied ordering of the algorithms differs from the qualitative ordering observed
in the J7(s¢) plot.

For each problem, let anljin be the minimum value such that every search strat-
egy achieves a value of V'V (s¢) at or below V.U by the end of its run. Similarly, let
€min b€ the minimum regret value such that every search strategy that keeps two-
sided bounds achieves a value of width(V (sq)) at or below €in. These values can
be thought of as “least common denominators” that allow time comparisons to be
made across all search strategies.

Table 6.3 reports the effort each search strategy required to reach the common
denominator upper bound value anfin.“ The left side columns give the number of
point-based updates performed, and the right side columns give the corresponding
wallclock time. HSVI was not included in the analysis for problems that caused it
to enter an infinite loop.

We see that FRTDP requires the fewest updates to reach VHI{in for all problems
except large—-ring, the one problem for which HSVI successfully terminated.
In that case, FRTDP was edged out slightly by HSVI. Excluding HSVI, FRTDP’s
speedup relative to the best other search strategy, measured in number of updates,
ranges from 1.6x to 3.1x.

The wallclock time measurements give a more mixed picture. Algorithms that
keep two-sided bounds (HDP+L, HSVI, and FRTDP) incur extra overhead on each
update for maintaining the lower bound. FRTDP also incurs overhead for main-

taining priority values. Relative to LRTDP updates, FRTDP updates take about

“Vrf,]m values for the problems were: LB, -23.25; LBW, -24.44; LR, -16.17; LRW, -16.51.

183



6. Heuristic Search

twice as long; this is sufficient to put LRTDP ahead in terms of wallclock time for
large-band large—-b-w, but not for large-ring and large-ring-w.

Table 6.4 reports the effort each search strategy required to reach the common
denominator regret value Emin. 12 Again, the left side columns give the number of
point-based updates performed, and the right side columns give the corresponding
wallclock time.

The ordering for effort to reach ey, is broadly similar to the previous table,
with FRTDP requiring far fewer updates than HDP+L, but much less dominant
in terms of wallclock time. Regrettably, our tests did not include a variant of
LRTDP that keeps two-sided bounds (“LRTDP+L"); it might well have outper-
formed FRTDP in terms of regret wallclock time on the 1arge—b variants.

Comparing the upper bound and regret scores to the J7(sg) plots, a few things
stand out. First, we notice that (especially for the 1arge-b variants) RTDP
quickly reaches a high policy quality despite the fact that its upper bound con-
vergence is the slowest among all the algorithms. As far as we can tell, this is
mostly a “last mile” issue. RTDP quickly reaches a reasonable policy, but takes
a long time to converge for the last few relevant states because of its stochastic
outcome selection. Unfortunately, this also suggests that the relative timing results
in the tables are fairly sensitive to the choice of the target value VHI{in or €pyin—if
we had used looser values RTDP would have looked better.

Second, as judged by eyeballing the Jm(sg) plots, the performance did not
vary too much among all the algorithms (with the exception of HSVI’s failure
to terminate). In every case, the policy quality was within, say, ¢ = 1 of the
optimal policy relatively quickly. The relative wallclock times required by all the
algorithms were within an order of magnitude of each other.

Third, on large—-ring and especially large—-ring—-w, HSVI and FRTDP
show J7(s) behavior that is qualitatively different from the other search/problem
combinations. Their policy quality increases smoothly rather than steeply, reach-
ing reasonable values relatively early on. We attribute this to outcome selection
differences.

RTDP selects outcomes stochastically, so over the course of a long trial, it is
unlikely to stay on the “nominal” path that always selects the most likely outcome.
LRTDP and HDP variants have bushier trials—in effect, they always select all
outcomes, but as a result their early trials involve far more updates than the other
search strategies.

In contrast, FRTDP and HSVI choose a single outcome in a systematic way.
This means that the first trial they roll out is likely to stay on a path that is nominal
in some sense. If the problem is structured so that the nominal path quickly reaches

2Dye to the way the algorithms were terminated, the emin value was 1072 for all problems.

184



6.6. Experimental Results

Millions of updates Wallclock (s)
LB LBW LR LRW |LB LBW LR LRW
RTDP 826 70.26 3.86 62.03 |97 849 62 832
LRTDP | 092 1.75 130 256 |33 134 47 200
HDP 1.83 336 240 33046 172 64 212
HDP+L | 1.83 336 240 330|4.6 183 6.6 21.7
HSVI - - 042 - - - 3.0 -
FRTDP | 0.57 085 044 082 |40 143 29 139

Table 6.3: Effort required to achieve the upper bound value V.Y for MDPs.

min

Millions of updates Wallclock (s)
LB LBW LR LRW LB LBW LR LRW
HDP+L | 1.83 336 240 343 |46 183 66 223
HSVI - - 042 - - - 30 -
FRTDP | 0.58 096 044 099 |41 147 2.9 1438

Table 6.4: Effort required to achieve the regret value €,,;, for MDPs.

a goal, this property can lead to quick discovery of a good core policy, with further
updates tending to improve the policy by making it more robust to falling off the
nominal path.

6.6.2 POMDP Results

We also compared the performance of the search strategies applied to the same
large sparse POMDP benchmark problems used in Chapter 4. The experimen-
tal procedure for POMDP testing was in most respects the same as was used for
MDPs; we mention only the differences here.

In order to apply the search strategies to POMDPs, we needed to choose an
appropriate representation for the POMDP value function bounds. We selected the
mask/prune lower bound representation and the mask upper bound represen-
tation based on the performance evaluation in Chapter 4. We also extended the
maximum wallclock time allotted for each run from 100 to 1000 seconds, since the
POMDP problems are far more difficult.

Table 6.5 reports the effort required for each search strategy to achieve the
upper bound value Vn?in.” The left side of the table gives the number of up-

dates required. Several algorithms have nearly the same performance, with HSVI

13Vrf,]m values for the problems were: Tag, -2.22; RS57, 26.29; LS1, 106.84.

185



6. Heuristic Search

-50

107!

20
25
30
35
-40
45
-50

107! 10

LB Upper Bound (smaller is better)

10°

LB Lower Bound (larger is better)

10!

10°

10°

LB Simulation (+/- 0.1, larger is better)

RTDP —e—
LRTDP ——

1 2

10 10

HDP+L ——
HSVI --o--

HDP —=— FRTDP --—+--

-50

107!

-20
-25
-30
-35
-40
-45
-50

107! 10

RTDP —e—
LRTDP ——

LBW Upper Bound (smaller is better)

10°

LBW Lower Bound (larger is better)

10!

10°

10°

LBW Simulation (+/- 0.1, larger is better)

0

HDP+L ——
HSVI --o--

HDP —=— FRTDP --—+--

Figure 6.5: Progress vs. wallclock (s) for the 1arge-b (“LB”) and large-b-w
(“LBW”) MDPs.

186



6.6. Experimental Results

-50

10!

107! 10

Figure 6.6:

LR Upper Bound (smaller is better)

10° 10! 10

LR Lower Bound (larger is better)

T
'
+

L

10° 10! 10

LR Simulation (+/- 0.1, larger is better)

RTDP ——
LRTDP ——

0 2

10! 10

HDP+L ——
HSVI --o--

HDP —=— FRTDP --—+--

large—-ring—-w (“LRW”) MDPs.

187

-12

-50

10!

LRW Upper Bound (smaller is better)

10° 10!

10°

LRW Lower Bound (larger is better)

10° 10!

10°

LRW Simulation (+/- 0.3, larger is better)

-10 T T IIIIIII T T IIIIIII T rrrrnm

.15 —

_20 L

—25 — (‘3./&’9@

o

35 | e

40 |

-45 |- v

_50 L L L IIIIIIO L L L1l LL 1 2
107! 10 10 10
RTDP —o— HDP+L ——
LRTDP —+— HSVI -- o --

HDP —a— FRTDP - -+ --

Progress vs. wallclock (s) for the large-ring (“LR”) and



6. Heuristic Search

performing best by a narrow margin on Tag and RockSample[5,7], and RTDP on
LifeSurveyl.

The right side of the table gives the corresponding wallclock time required. We
find that while RTDP performs best on LifeSurveyl, HDP is the surprise winner
on both the Tag and RockSample[5,7] problems, outperforming HSVI by a wide
margin. This indicates that individual HDP updates were much faster than HSVI
updates, which can be explained by two main factors.

First, since HDP did not maintain a lower bound, it did not incur extra overhead
from lower bound updates. When we examined discrete MDPs with tabular bounds
representations, lower bound overhead had relatively little impact on overall update
time. In contrast, for POMDPs, using more complex updatable representations,
lower bound updates turned out to be much slower than upper bound updates, more
than doubling the update time. (However, the extra overhead FRTDP incurs to
calculate a priority value turns out to be insignificant compared to value function
updates.)

Second, for these problems HDP updated each belief it expanded more often. A
useful statistic to examine is the update ratio, or mean number of belief updates per
distinct belief expanded. For Tag, HDP’s update ratio was 10.6 vs. 3.2 for HSVI.
For RockSample[5,7], HDP’s update ratio was 12.8 vs. 3.2 for HSVI. Because
HDP spent more time updating beliefs it had already expanded rather than looking
at new beliefs, its bounds representations tended to contain fewer entries and thus
could be updated faster.

We are unsure why HDP’s update ratio was higher, but it may be explained by
the fact that each bushy HDP trial included more updates than a single-path HSVI
trial. Actions selected early in a trial in effect commit an algorithm to exploring a
particular part of the search graph for the rest of the trial. Each such commitment
lasted longer with HDP’s longer trials, which could have led HDP to visit fewer
distinct beliefs.

Table 6.6 reports the effort required for each search strategy to achieve the
regret value eyin.'* The left side of the table gives the number of updates re-
quired. HSVI required the fewest updates on Tag, narrowly edging out HDP+L
with FRTDP well behind, and FRTDP performed best by a wide margin on the
other problems.

We are not sure why different algorithms fare better from problem to problem.
We can say that the Tag is qualitatively different from the other two problems in
that it (1) has far fewer states, and (2) includes motion errors that continually in-
ject fresh uncertainty into the problem. In contrast, for both RockSample[5,7] and
LifeSurveyl, uncertainty starts high and decreases throughout execution as obser-

¢ min values for the problems were: Tag, 3.87; RS57, 4.26; LS1, 15.21.

188



6.7. Conclusions

vations are collected.

The right side of the table gives the corresponding amount of wallclock time
required. FRTDP is still best on RockSample[5,7] and LifeSurveyl, but HDP+L
manages to beat HSVI on Tag due to its faster individual updates. Both HSVI
and HDP+L incur lower bound overhead, but HDP+L gains an advantage from its
higher update ratio (the same update ratio as HDP, since HDP and HDP+L choose
the same beliefs to update).

Note an apparent anomaly—according to the table, FRTDP updates appear to
take less time on average than HDP+L updates on the RockSample[5,7] problem.
This is because for any algorithm the time spent per update tends to grow as the al-
gorithm progresses due to the increasing size of the bounds representations. Since
FRTDP reached the desired regret bound after fewer updates, its reported number
of updates and wallclock time represent the average time per update for only the
early part of the update sequence.

Figures 6.7 and 6.8 report progress vs. wallclock time for each combination of
problem and search strategy. As with the MDP performance plots, each column is
devoted to one of the problems, and from top to bottom the frames plot V'V (),
VL(by), and the estimated value of Jr(bg) from simulation trials.

The plots of upper bound and lower bound progress do not contain any partic-
ular surprises given our earlier discussion of relative effort for the different search
strategies.

However, the plots of policy quality J7(by) are qualitatively different from the
corresponding plots for MDPs. Search strategies that maintained two-sided bounds
and used PV ¥ as their policy (HDP+L, HSVI, and FRTDP) had quality increasing
smoothly throughout the run. On the other hand, search strategies that used PVY
(RTDP, LRTDP, and HDP) had policy quality that varied erratically up and down
without any obvious increase over the run. For POMDPs, the regret guarantee
implied by the uniformly improvable lower bound is evidently a more significant
issue.

6.7 Conclusions

We presented two novel search strategies, HSVI and FRTDP, that are designed to
be used within the framework of focused value iteration. Both search strategies use
two-sided uniformly improvable bounds to both guarantee the quality of the output
policy and guide outcome selection. FRTDP goes beyond HSVI in that its outcome
selection is less myopic; however, to achieve this it sacrifices some simplicity.
FRTDP converges over the class of RTDP-solvable MDPs, which most natu-
rally represent problems with a finite state space where the task is to reach a goal

189



6. Heuristic Search

Tag Upper Bound (smaller is better)

RS57 Upper Bound (smaller is better)

'0.5 T T IIIIIII T T IIIIIII T rrrrnm 28.5 T T IIIIIII T T IIIIIII T rrrm
-1 28
-5 27.5
2 - 27
25 - 26.5
3 26
_3.5 1 IIIIIIII1 1 IIIIIIII2 25.5
10° 10 10 10°
Tag Lower Bound (larger is better) RS57 Lower Bound (larger is better)
-6 25 T LELELELELALL T rrrnn T e
62 A 2% ! +‘J,+—o-/enere-e
-6.4 - e — -7 <
66 o7 ® _ 23 -
- . +4 '
6.8 |- s - 22 -
7+ — 21 |
12 ) ! — 20
14 , : — |
76 M - 19
78 - 18 =
_8 1 1 IIIIIII 1 1 IIIIIII 1 L1 1111l 17 1 1 IIIIIII 1 11 IIIIII 1 L1 11111
10° 10" 10 10° 10° 10! 10° 10°

Tag Simulation (+/- 0.1, larger is better)

RS57 Simulation (+/- 0.09, larger is better)

26
24
22

)
P
-9

. g
VR C R AN @

T rrrrm
-0 +1

_18 L L L i 8 L L L i
10° 10! 10 10° 10° 10! 10 10°
RTDP —o— HDP+L —%— RTDP —o— HDP+L —%—

LRTDP —+— HSVI -- o -- LRTDP —+— HSVI -- o --
HDP —=— FRTDP --—+ - - HDP —=— FRTDP --—+ - -

Figure 6.7: Progress vs. wallclock (s) for the Tag and RockSample[5,7] (“RS57”)
POMDPs.

190



6.7. Conclusions

120
115
110
105
100

95

10

96

LS1 Upper Bound (smaller is better)

0

10

1

10° 10

3

LS1 Lower Bound (larger is better)

94
92
90
88
86
84

#++

82

10

10> 10°

LS1 Simulation (+/- 0.3, larger is better)

95 T T IIIIIII T T IIIIIII T I,QJ..I—II-

90 Q;'—GP@!JG& Cts, S

85

80

75

70

65 L L IIIIIII L L IIIIIII L L L i1
10° 10! 10% 10°
RTDP —o— HDP+L —%—
LRTDP —+— HSVI -- o --

HDP —e&— FRTDP - -+ --

Figure 6.8: Progress vs. wallclock (s) for the LifeSurveyl (“LS1”) POMDP.

191



6. Heuristic Search

Thousands of updates Wallclock (s)

Tag RS57 LSI Tag  RS57 LS1
RTDP | 399 492 65.0 | 306.1 6535 188.8
LRTDP | 353 424 67.7 | 465.0 1000.7  327.2
HDP 18.8 34.1 1758 | 10.0 261.8 483.1
HDP+L | 18.8 34.1 1758 | 65.1 6444 1002.6
HSVI 141 272 1329|2185 8273  586.1
FRTDP | 43.0 31.8 65.9 | 974.8 1000.0  346.0

Table 6.5: Effort required to achieve the upper bound value an{in for POMDPs.

Thousands of updates Wallclock (s)

Tag RS57 LS1 Tag  RS57 LS1
HDP+L | 27.6 47.0 175.8 | 101.9 1000.0 1002.6
HSVI 21.9 5.6 1335 | 403.9 79.6  588.8
FRTDP | 43.0 3.6 51.8 | 974.8 348 2524

Table 6.6: Effort required to achieve the regret value €, for POMDPs.

state with minimum effort. HSVI, on the other hand, converges over the class of
discounted finite-branching MDPs, which can naturally express tasks with multiple
competing goals and costs; this class also includes the belief-MDP representations
of discounted POMDPs that have a finite state space. Unfortunately, neither algo-
rithm has guaranteed convergence over both classes of MDPs.

Our experiments with RTDP-solvable MDPs drawn from the racetrack domain
show that HSVI often fails to converge. As for FRTDP, it always converged, usu-
ally with fewer updates than other competing search strategies, but its overall time
performance was slower in some cases (by the Vrgin measure) because its individual
updates were more expensive. Our advice for practitioners:

1. HSVI is clearly not suitable for this type of RTDP-solvable MDP due to its
frequent failure to converge.

2. Although RTDP was competitive with the other algorithms in terms of quickly
producing an acceptable policy, it does not appear to have any compelling
advantage, and should probably be avoided due to its lack of a built-in way
to monitor convergence.

3. Any of the other algorithms we studied will probably provide acceptable
performance on small problems if time constraints are not too tight and ex-
tremely precise convergence is not necessary. With more severe require-

192



6.7. Conclusions

ments, it may be worthwhile to test a few of the algorithms and compare
performance. FRTDP is a reasonable first choice. We should also note that
some potentially strong algorithms were not included in our experimental
comparison (see §2.9.5).

4. One should keep two-sided bounds if it is important for the output policy to
have strong quality guarantees.

We also compared search strategy performance on large sparse POMDPs. Al-
though we cannot guarantee that FRTDP will converge for these problems, it did
not have any difficulties in practice. No single algorithm dominated over all the
problems. By the Vn[n]in measure, many search strategies required nearly the same
number of updates, and those that did not incur extra overhead from keeping a
lower bound had much better time performance. By the €,i, measure, which seems
to be better connected to policy quality in simulation, HSVI and FRTDP required
fewer updates, but the superior time performance of HDP+L on the Tag problem
showed that for POMDP search it is also important to take into account the update
ratio. Our advice for practitioners:

1. For these large POMDPs, keeping a lower bound appears to be critical.
Search strategies that relied on PV'Y had policy quality that was highly er-
ratic, without any obvious increase over time.

2. FRTDP performed well for these POMDPs, but it may not converge in all
cases, particularly because the POMDP belief space is not finite.!> For some
uses this reliability concern may outweigh its evident performance benefits.

3. Among algorithms that keep a lower bound, there is wide variation in con-
vergence time with no clear winner across all problems. This suggests try-
ing multiple algorithms to see which is best suited to your type of problem.
HSVI is a reasonable first choice.

5Tt is possible that the generalization provided by some POMDP value function representations
ensures FRTDP termination even though the belief simplex is infinite. Unfortunately, this kind of
question is not easy to resolve using the theoretical tools we have developed so far.

193



6. Heuristic Search

194



Chapter 7

POMDP State Abstraction

The state of a POMDP can often be factored into a tuple of n state variables. The
corresponding unfactored or “flat” model, with size exponential in n, may be in-
tractably large. This issue is important because most existing POMDP solvers
operate on a flat model representation, with only a few exceptions (Hansen and
Feng, 2000; Poupart and Boutilier, 2004).

However, in some problems there are efficient ways to identify irrelevant vari-
ables that cannot affect the solution. In that case the irrelevant variables can be
abstracted away, exponentially shrinking the state space in the flat model (Boutilier
and Dearden, 1994). If the overall task can be hierarchically decomposed into sub-
tasks, one can take a finer-grained approach and temporarily abstract away vari-
ables that are relevant overall but irrelevant within a particular subtask (Pineau
et al., 2003c). When interleaving planning and execution, the amount of abstrac-
tion may also vary at different planning horizons (Baum and Nicholson, 1998).

We present an alternate method called conditionally irrelevant variable abstrac-
tion (CIVA) for losslessly reducing the size of the factored model. A state variable
is said to be conditionally irrelevant for a given partial assignment to other state
variables if certain conditions are satisfied that guarantee it can be temporarily ab-
stracted away without affecting policy optimality. Figure 7.1 shows how CIVA fits
into the overall planning process. Our method considers only factored state, al-
though factored actions and observations can also be useful (Guestrin et al., 2001;
Feng and Hansen, 2001).

We applied CIVA to previously intractable POMDPs from a robotic exploration
domain (motivated in §8.4). We were able to abstract, expand, and approximately
solve POMDPs that had up to 10?* states in the uncompressed flat representation.
The resulting policies outperformed hand-tuned heuristic policies both in simula-
tion and in testing onboard a robot in a controlled outdoor environment.

195



7. POMDP State Abstraction

(—r
factored (intractable) [ exponentially
memmes large flat intractable
POMDP > POMDP ..(. )
N————/
approximately
@ optimal
policy
) C—— /
abstract expansion exponentially standard
factored . smaller solver
POMDP flat POMDP
— S ikt [HOWIIDI? )

Figure 7.1: CIVA Process Diagram.

7.1 Example Problem

Our primary testing domain for CIVA was the LifeSurvey robotic exploration prob-
lem. We will use MiniLifeSurvey, a simplified version of LifeSurvey, to provide in-
tuition about conditional irrelevance. In MiniLifeSurvey, a robot is moving through
a one-dimensional map from west to east. The robot has sensors for detecting life
en route, but it must balance the cost of using these sensors against the expected
value of the resulting data. The robot has three available actions:

1. move: Moves the robot one cell to the east, with a cost of -1. Always returns
anull observation.

2. scan: Applies the robot’s long-range sensor, providing noisy information
as to whether life is present in the cell just ahead of the robot, with a cost of
-2. Returns either a positive or negative observation.

3. sample: Applies the robot’s short-range sensor to the current cell, with a
cost of -10. Always returns a null observation (the sensor data is returned
to scientists, but not analyzed onboard the robot). If the cell contains de-
tectable life, the robot receives a reward of +20.

The variables in MiniLifeSurvey are:

1. X7: The position of the robot, ranging from 1 to k. The position is always
known and advances deterministically when the move action is applied.

2. Y1,...,Y;: Each Y; has the value L or N (“life” or “no life”’) depending on
whether cell 7 of the map contains detectable life or not.

The robot starts in cell 1 and has remote sensing data that provides independent
prior probabilities for the Y; variables. The problem ends when the robot applies
the move action in the rightmost cell.

196



7.1. Example Problem

X

i

=3
\

\
START # END

Y Y Y Y Y

1 2 4 5

3
Pr(Y,=1)=0.1 0.0l 05 0.1 0.1

Figure 7.2: The MiniLifeSurvey problem.

0wl X,=4Y,=N.Y =L ]

[X]=3,Y3=L, Y,=N

09 X =4,Y, =N,V =N |

Figure 7.3: A state transition in the abstract model.

Figure 7.2 shows an instance of MiniLifeSurvey with k = 5. The priors
Pr(Y; = L) for each Y; are shown below the map. The robot is shown at posi-
tion X7 = 3. From this position, the observation returned by the scan action
depends on Y, and the reward from the sample action depends on Y3.

The key insight underlying CIVA is that in a structured problem like Mini-
LifeSurvey the robot needs to consider joint assignments to only a few of the state
variables at any one time. In position X; = 3, only the variables Y3 and Y, are
immediately relevant in the sense that they can affect the rewards or observations
in the next time step. Because the robot moves only forward, variables Y7 and Y>
can have no further effect on the system. Variable Y5 will be important later, but
nothing can be learned about its value through any of the other Y; variables or the
robot’s next action, so in considering the next action to take the robot can temporar-
ily disregard Y5 and reconstruct its probability distribution later as needed. (These
concepts will be formalized later.)

Figure 7.3 shows one example state transition for the move action in the ab-
stract model produced by CIVA. Each abstract state in the reduced model corre-
sponds to an equivalence class of states in the original model. For example, the
abstract state on the left corresponds to the set of all states with X; = 3, Y3 =L,
Y, = N, and any value for the other Y; variables. The arrows in the diagram are
labeled with transition probabilities.

As we will explain later, the abstract states in the abstract model specify values
only for the Y; variables that are conditionally relevant given the value of Xj.
With X; = 3, Y3 and Y, are conditionally relevant; with X; = 4, Y, and Y; are
conditionally relevant.

197



7. POMDP State Abstraction

Abstracting away variables in the factored model results in an exponentially
smaller flat model. In the uncompressed MiniLifeSurvey model with map length k,
there are k possible values for X; and k binary-valued variables Y;, so there are
k x 2F states. In the CIVA-compressed model, only the position and two of the Y;
variables need to be tracked at a time, so there are just 4k abstract states.

7.2 POMDP Review

Recall that a POMDP policy is a mapping from histories to actions in the form
ag :W(GQ,OQ,CL]_,O:L,...7(lt_170t_]_). (71)

Given a system model and the initial belief by, the agent can use Bayesian updates
to calculate the posterior belief b; corresponding to any history and rewrite the
policy in the form a; = 7(b;). It is a theorem that every POMDP P has an optimal
policy 7*, which among all policies © maximizes the long-term expected reward

JPTI'(b) = Eﬂ-’bozb

> A R(st, at)] (7.2)

t=0

for all beliefs b. (We use the superscript P in .J*" to denote the value of the policy
with respect to the specific POMDP model P.) Solving the POMDP exactly means
finding such an optimal policy, but most practical algorithms find a policy that is
only guaranteed to be near-optimal for a given starting belief by.

We say that two models P = (S, AT,R,7,0,0,b)) and P =
(8" A TR ,+/,0',0',by) are policy-compatible if A = A’ and O = O'. Pol-
icy compatibility ensures that any policy for P’ can be applied to P, since policies
for the two models have the same functional form according to equation (7.1),
although they may represent system state and beliefs differently.

We say that P and P’ are policy-equivalent if for every policy 7 the long-term
expected reward of the initial belief is the same for the two models

JPm(bo) = JF m(b)). (7.3)
Policy equivalence ensures that the two models have the same optimal policies.

Applying CIVA to a model P produces a policy-equivalent model P’.

!"These definitions of policy compatibility and equivalence are novel as far as we know.

198



7.3. Conditional Relevance

7.3 Conditional Relevance

In this section we formally define conditional relevance and present an approach
for identifying conditionally irrelevant variables so that CIVA can abstract them
away. CIVA is based on the assumption that the state can be factored into a tuple of
discrete variables (X1,..., X;,Y1,...,Y}), where X1,. .., X; are upstream vari-
ables and Yy, ..., Y} are downstream variables. We denote the tuple of upstream
values X = (X,...,Xj), and similarly Y = (Y7,...,Y}). We use ¢ to denote
the value of particular variables; for example, ¢ x, (s) is the value of variable X in
state s, and ¢ x () is the joint value of all upstream variables in state s.

Upstream variable values are always known to the agent, transition determinis-
tically, and are independent of the downstream variables (though they may depend
on other upstream variables). In MiniLifeSurvey, the known and deterministically
transitioning position X is an upstream variable, but the uncertain Y; variables
representing the presence of life are downstream variables.

Upstream variable dynamics are already specified along with the other vari-
ables as part of the transition function 7', but it is also convenient to define special
notation that reflects the additional structure. We define the upstream transition
function U such that 2’ = U(z, a), where z is the value of the upstream variables
at one time step, and 2’ is the upstream value at the next time step after taking
action a.

An upstream value x is reachable if, starting from the known initial upstream
value xg, there is a sequence of upstream transitions that reaches x. The set of all
reachable upstream values can easily be generated by forward recursion from x.

We will build up the definition of conditional relevance in several steps. A
downstream variable Y; is immediately relevant at x, written Y; € f®(z), if it is
possible for Y; to have an “immediate effect” on the problem. That is, Y; € fR(x)
unless all of the following constraints hold:

I1. Y; has no immediate effect on reward. For any state s, let s/E denote the
set of states that agree with s over all variables other than Y;. Let a be an
action, let s be a state with ¢x(s) = z, and let s’ € s/E. Then we must
have R(s,a) = R(s'; a).

12. Y; has no immediate effect on observations. Let a be an action, o be an
observation, let s be a state with ¢ x(s) = z, and let s’ € s/E. Then we
must have O(a, s,0) = O(a, §',0).

13. Y; has no immediate effect on the transitioning of other variables. Let a be
an action, let s be a state with ¢x(s) = z, let s € s/F, and let s” be an

199



7. POMDP State Abstraction

arbitrary state. Then we must have

Y T(s,a,0)= > T(s,a,0). (7.4)

ces" |E ces" |E

The idea is that immediately relevant variables tend to become “entangled” with
the rest of the system, so they typically cannot be abstracted away without losing
policy-equivalence. In MiniLifeSurvey, when X; = ¢, Y; is immediately relevant
because it influences reward under the sample action (condition I1), and Y;4 is
immediately relevant because it influences the observation under the scan action
(condition 12).

A downstream variable Y; is a-predictable at x, written Y; € fP(x,a), if it
is possible to reconstruct the distribution over possible values of Y; after applying
action a in a state with ¢ x (s) = z, given only knowledge of x, a, and by. In other
words, given x, a, and by, the distribution over possible values for Y; after the tran-
sition must be conditionally independent of all other state information, including
the preceding value of Y; and other downstream variables.

The idea is that we can temporarily “forget” probabilistic information about
the value of a variable, even one that is going to be relevant later, if at that later
point the information can be reconstructed. In MiniLifeSurvey, when X; = 1, the
variable Y; is a-predictable for all actions if j > ¢ + 2. This is because the robot
has not yet had an opportunity to learn anything about variables beyond its sensor
range—all available information can be reconstructed from the initial belief.

A downstream variable Y; is conditionally relevant at x, written Y; € fR(z), if
either:

C1. The variable Y; is immediately relevant at x, or

C2. For some action a, (i) Y; is conditionally relevant at ' = U(x,a), and (ii)
Y is not a-predictable at x.

The idea is that the agent needs to keep track of probabilistic information about
a variable if it is either immediately relevant or there is a future point where it
is both relevant and we have no way to reconstruct the information. In MiniLife-
Survey, when X; = 17, only the immediately relevant variables Y; and Y;, are
conditionally relevant. The relevance determination algorithms discussed below
help develop intuition as to why this is the case.

200



7.4. Relevance Determination

7.4 Relevance Determination

We assume that the factored model provided to CIVA specifies which variables
are upstream versus downstream, as this is easy to determine manually. However,
we still need a way to determine the upstream values where downstream variables
are conditionally irrelevant so we can abstract them away. We call this problem
relevance determination.

A relevance determination algorithm is exact if for any upstream value z it cal-
culates the exact set fR(x) as defined above. In contrast, it is conservative if for
any z it calculates a superset of fX(z). In other words, a conservative algorithm
errs only on the side of tagging variables relevant when they are not. Conserva-
tive relevance determination may result in a compressed model that is larger than
necessary, but it retains the key property that the original model and compressed
model are policy-equivalent.

Our approach to relevance determination is conservative. It is a three-step pro-
cess. We (1) find immediately relevant variables, (2) find predictable variables, and
(3) find conditionally relevant variables.

7.4.1 Finding Immediately Relevant Variables

The first step in relevance determination is to calculate the immediately relevant
variables f'R(z) for every reachable upstream value z. To ensure that the overall
conditional relevance determination is conservative, the immediate relevance de-
termination also needs to be conservative. That is, when in doubt it must tag a
variable as immediately relevant.

Checking the immediate relevance constraints 11-13 for Y; € f'®(z) by brute
force is often intractable, since each constraint involves enumeration over the set
of all states s with ¢x(s) = z; this set has size exponential in the number of
downstream variables. Thus tractable immediate relevance determination depends
on leveraging the structure of the factored model.

CIVA is a general approach that is not tied to any particular factored repre-
sentation. Possible representations for the R, O, and I" functions include decision
trees (Boutilier et al., 2000) and algebraic decision diagrams (ADDs) (St. Aubin
et al., 2000), among others. Immediate relevance determination can be performed
over any representation, but the choice of representation affects its computational
complexity.

For concreteness, we describe an efficient exact immediate relevance determi-
nation algorithm for a particular decision tree representation. Let the functions R,
O, and T be represented as decision trees with the following variable ordering: (1)
first branch on the action, (2) then on the observation (for O only), (3) then on

201



7. POMDP State Abstraction

upstream state variables in an arbitrary fixed order, (4) then on downstream state
variables in an arbitrary fixed order. The 7" function takes two state arguments s
and s’; all state variables of s are ordered before all state variables of s in the
decision tree. Let ng, no, and np be the number of nodes in the decision tree
representations of R, O, and T respectively.

One can determine if Y; € f'®(z) using the following procedure:

1. Check I1. Restricting the function R to a particular action a and upstream
value x corresponds to selecting a particular subtree of the decision tree. If
for every action a the corresponding subtree does not contain a node branch-
ing on Y;, then I1 is satisfied. Overall, this check can be performed in order
ng time (and usually much faster, since portions of the tree relating to up-
stream values other than x can be ignored).

2. Check I2. Similar to the check of I1, this time iterating over all combinations
of actions and observations in O. This check can be performed in order no
time.

3. Check I3. Restricting 7" to a particular action a and upstream value ¢ x (s) =
x corresponds to selecting a particular subtree. Then in order to check 13
we must (1) sum out the Y; variable of s’ within the subtree, (2) recursively
canonicalize the subtree by eliminating branch nodes that have identical sub-
trees on either branch, and (3) check if the subtree now contains a node
branching on the Y; variable of s. This procedure can be performed for all
actions in order np time.

Thus, for each upstream value x and variable Y;, we can check if ¥; € fR(x) in
order nr +no + nr time, which is relatively efficient if the model is compact. The
procedure is exact under the condition that R, O, and 1" decision trees provided to
it are canonical, meaning they contain no unnecessary branch nodes.

Note that not all problems with factored structure can be compactly represented
with this type of decision tree. We expect that efficient conservative immediate
relevance determination algorithms exist for ADDs and under certain relaxations
of the variable ordering constraints, but this is the only case we have worked out in
detail.

7.4.2 Finding Predictable Variables

The second step in relevance determination is to calculate the a-predictable vari-
ables fF(z,a) for every reachable upstream value  and action a. Recall that
Y; € fP(x,a) if, after applying action a in a state with X = z, it is possible

202



7.4. Relevance Determination

to reconstruct the probability distribution of Y; given only knowledge x, a, and bg.
Because of the way predictability relates to conditional relevance, we say that a
predictability determination algorithm is conservative if it errs only on the side of
tagging variables not predictable.

We do not know of any tractable algorithm for exact predictability determina-
tion in the general case. Predictability of Y; at x depends on whether the agent is
able to gain information about Y; on the way from the initial state to a state with
X = z, and whether that information is still pertinent when it arrives. Since these
considerations can in general depend on the path that the agent takes through the
state space, it might be very difficult to check that a variable is predictable over all
paths.

However, if the goal is conservative predictability determination, there are sev-
eral types of structure that make it easy to prove that a variable is predictable. For
example:

o If applying action a in a state with X = x overwrites all previous informa-
tion about Y;, then Y; € f¥(x,a). For example, if action a flips a coin, the
agent knows that there is a 50% chance the coin shows heads after the state
transition, regardless of what information it might have had before.

o If one can show that any path leading to a state with X = z must pass
through a state with X = 2/, and entering a state with X = 2/ fixes a known
and permanent value for Y;, then Y; € f¥(z,a). For example, suppose the
only way to get hold of a fire extinguisher is to break its glass case. Then if
the agent has the fire extinguisher, it can reconstruct the fact that the glass is
broken.

In our robotic exploration domain, we rely on yet another type of special structure
that implies predictability. A variable Y; is untouched at x, written Y; € fY(x) if
it satisfies:

Ul. Y, is independent of other variables in the initial belief,
U2. The value of Y; does not change over time,
U3. Yj is not immediately relevant at z, and

U4. For every predecessor upstream value 2’ such that z = U(2/,a), Y; is un-
touched at 2.

If a variable is untouched at x, we can be sure that its probability distribution is
unchanged from what it was in by. This makes it a-predictable at x for every action
a. For example, if the agent starts out believing there is a utility closet upstairs

203



7. POMDP State Abstraction

with 50% probability, and the agent has not yet had enough time to go upstairs and
check, its current belief about the utility closet is just its initial belief.

We can identify untouched variables using forward recursion. First we mark
as touched every variable that violates U1-U3. Then we perform local updates to
enforce the consistency of U4; if Y; is touched at x, then Y; is marked as touched
at all successors ' = U(z, a) of . Local updates are propagated forward until U4
is globally satisfied.

7.4.3 Finding Conditionally Relevant Variables

The final step in relevance determination is to calculate the conditionally relevant
variables fR(z) for every reachable upstream value z. The reader may wish to
review the definition of conditional relevance, conditions C1 and C2 above.

With f®(z) and fP(x) in hand, it is straightforward to calculate fR(z) by
backward recursion. First we mark every immediately relevant variable as con-
ditionally relevant to satisfy C1. Then we perform local updates to enforce the
consistency of C2. If Y; is conditionally relevant at x, then it is marked as condi-
tionally relevant for all predecessors 2’ such that z = U(2’,a) and Y; ¢ f¥(2', a).
Local updates are propagated backwards until C2 is globally satisfied.

7.5 Model Abstraction

This section defines the form of the abstract model produced by CIVA. First we
define the predictability transformed version of the transition function 7. Let x be
an upstream value and a be an action such that Y; € fF(x,a), and let s be a state
consistent with z. The predictability of Y; means that its probability distribution
after the state transition can be calculated given only knowledge of z, a, and by.
There are two ways this can happen:

1. For prior states with X = z, the value of Y; after applying a depends only
on a. In this case no change needs to be made.

2. The value of Y; after applying a formally depends on some downstream
variable Y;,,, but in fact all reachable beliefs with X = z have probability
distributions for Y, that lead to the same prediction of Y;.2 In this case, we
can rewrite the transition function so that, independent of the value of Y,,,,
the posterior probability distribution of Y; is its reconstructed value as an
a-predictable variable.

>When we say a belief with X = z we mean a belief in which only states with X = z have
non-zero probabilities.

204



7.6. Application to MiniLifeSurvey

The result of performing this rewrite wherever possible is denoted T".

Conditional relevance defines an equivalence relation E on states, such that for
two states s, s’, we have F(s, ) if s and s’ both (i) share the same upstream value
x and (ii) agree on the values of the conditionally relevant downstream variables
fR(x). E induces a partition of S into equivalence classes of similar states. Let
s/E ={s'| E(s,s’)} denote the class containing state s.

We will abuse notation by writing versions of T, O, and R that take equivalence
classes as arguments. We define

T(s,a,s'/E)= Y T(s,a,0), (7.5)

ces'/E

and we define T'(s/FE, a,s' /| E) = qifforall o € s/E, we have T(0,a,5'/E) = q.
Otherwise T'(s/E, a, s’/ E) is not well defined. R(s/FE,a) and O(a,s’/E,0) can
be well-defined or not in a similar way.

It turns out that with conditional relevance defined as presented earlier, for all
s,5',a,0, we have that T(s/E, a,s'/E), R(s/FE,a) and O(a,s'/E, o) are well-
defined. Thus equivalence classes in the original model can be used as states in
the reduced model, and the equivalence-class versions of T , R, and O define the
reduced system dynamics. The fact that the reduced system dynamics are well-
defined implies that the abstract model is policy-equivalent to the original. We
include only the equivalence classes corresponding to reachable upstream values
in the reduced model.

7.6 Application to MiniLifeSurvey

Now we tie some of the formal concepts back to the MiniLifeSurvey domain in-
troduced earlier. When the robot is at position X; = 3, the immediately relevant
variables are fIR(x) = {Y3,Y,}. Cell 3 is the current cell, so Y3 affects the reward
when applying the sample action. Cell 4 is the cell just ahead of the robot, so Yy
affects the observation when applying the scan action.

Recall that in general all untouched variables are a-predictable. In MiniLife-
Survey, the converse happens to be true as well. With X; = 3, the only untouched
variable is fU(x) = {Y5}. As the robot moves from west to east, all other down-
stream variables have already had a chance to affect observations.

With X; = 3, the conditionally relevant variables are fR(z) = {V¥3,Y3}. V1
and Y5 are irrelevant because there is no way they can affect future observations or
rewards. Yj is irrelevant because, even though it will become immediately relevant
when X = 4, it is currently untouched.

205



7. POMDP State Abstraction

Figure 7.3 shows one example state transition for the move action in the ab-
stract model. The value of Y, remains the same across the transition, since all the
Y; variables are static. This could be inferred directly from the original transition
function 7'. On the other hand, the value of Y5 was not specified before the transi-
tion. The distribution over Y5 values after the transition is inferred from the prior
probability information Pr(Ys; = L) = 0.1 from the initial belief. This information
from by was effectively folded into the transition function when T was transformed
into 7.

7.7 Application to LifeSurvey

The full LifeSurvey problem places the robot in a two-dimensional map. The robot
must move from the west edge of the map to the east edge, but within the bounds
of the map it can choose its own path. Figure 7.4 shows an example prior map.
Regions of the map are indicated as contiguous groups of cells with the same shad-
ing. Each region has its own per-cell prior probability of containing detectable life.
In addition, the robot receives reward only the first time it samples a cell with ev-
idence of life in any given region. LifeSurvey is motivated and described in detail
in §8.4.

In the interest of expediency we developed a special-purpose version of CIVA
for LifeSurvey. The uncompressed system dynamics were expressed procedurally,
rather than in a declarative representation like a decision tree or ADD. As the im-
mediate relevance structure for LifeSurvey was fairly simple, we found it easiest
to provide CIVA with a hard-coded conservative labeling of immediately relevant
variables rather than writing a general-purpose routine to check 11-13. Determi-
nation of predictability and conditional relevance used constraint propagation as
described earlier.

The LifeSurvey domain is well suited to CIVA. The downstream variables in
LifeSurvey include both per-cell variables (presence or absence of life), and per-
region variables (has life been sampled in this region yet?). Only the robot’s current
cell and cells just ahead are relevant, and regions that the robot has permanently
left behind or has yet to encounter are irrelevant.

The instance shown in Figure 7.4, called LifeSurveyl, had 3.5 x 10%* states
in the unreduced flat representation versus 7,001 with the flat representation after
CIVA. We can get better insight about the abstraction by looking at the contribu-
tions from different state variables (see detailed variable descriptions in §8.4.2).
Decomposing:

e position. This is an upstream variable; upstream variables are never ab-
stracted.

206



7.8. Conclusions

Figure 7.4: LifeSurveyl prior map.

lastMoveDirection. Upstream variable.
usedScanInThisCell. Upstream variable.

lifeInCell. (c =1,...,k). Only (at most) the three cells immediately
ahead of the rover are conditionally relevant. With k total cells in the map,
abstraction reduces the number of joint assignments to the cells from 2% to
approximately 23. For LifeSurveyl, with k = 63, this provides the majority
of the compression, a factor of about 5.8 x 10'7.

rewardInRegion, (r = 1,...,n). The only conditionally relevant re-
gions are those that (1) might already have been sensed, given the rover’s
current position and (2) are still reachable from the current position.

The amount of abstraction achievable depends on the shape of the regions; in
the worst case, if regions were arranged such that the robot could drive from
any region to any other, all per-region variables might be relevant simultane-
ously, which would lead to very little compression. However, LifeSurveyl is
relatively benignly structured, such that in many positions only the current
region is relevant.

With n regions in the map, in the best case, abstraction reduces the number
of joint assignments from 4™ to 4. For LifeSurveyl, with n = 5, this gives
a best case compression factor of 256. The observed compression factor is
about 200.

Combining the 11 feInCell, and rewardInRegion, abstractions gives

7.8

an approximate best-case compression factor of 2573 x 4"~1. For LifeSurveyl,
these two abstractions reduced the size of the model to 29,953 states. Finally, after
discarding unreachable states, only 7,001 states remained.

Conclusions

We presented CIVA, a novel approach for losslessly compressing POMDPs with
appropriate factored structure. When applied to the LifeSurvey robotic exploration

207



7. POMDP State Abstraction

domain, we were able to abstract, expand, and approximately solve POMDPs
whose uncompressed flat representation had up to 10?4 states.

Effective use of CIVA relies on strong assumptions about problem structure.
There must be deterministic state variables to use as upstream variables. If the
LifeSurvey model included position uncertainty, position could not have been used
as an upstream variable.

The existence of conditionally irrelevant variables tends to rely on a sense of
“forward progress” through the system. If the LifeSurvey robot was able to move
backward through the map, cells it passed by would no longer be irrelevant. If
the problem was cyclical in nature, there would typically be no untouched state
variables after the first cycle. (Although some variables might still be a-predictable
due to other types of structure.)

Irrelevance also requires a certain amount of independence between down-
stream variables. If downstream variables are correlated in the by prior, then they
cannot be considered untouched according to our current definition (although the
requirements could be relaxed in some circumstances). Similarly, downstream
variables can become entangled if they affect each other’s transitions or they jointly
affect observations.

For these reasons, we expect that only a small proportion of interesting POMDP
problems would gain significant benefit from the full CIVA compression algorithm
described here. However, many more problems have approximate conditional irrel-
evance structure which could lend itself to lossy compression extensions of CIVA.

Overall, the reader may wish to think of this chapter less as a description of an
integrated algorithm and more as a conceptual toolkit. Depending on the problem,
some or all of the CIVA concepts may be applicable. For instance, the idea of
rewriting the transition function based on some form of reachability analysis in
order to fold in information from the initial belief and remove dependencies on
the prior state may work with other types of problem structure that we have not
considered.

208



Chapter 8

Science Autonomy

“Science autonomy” refers to exploration robotics technologies involving onboard
science analysis of collected data (Castafio et al., 2003b). We demonstrated the
relevance of science autonomy and POMDP planning to robotic exploration in the
context of the Limits of Life in the Atacama project (Figure 8.1), a three-year
effort to study techniques for robotic exploration and map the distribution of ex-
tremophile life in the Atacama Desert of Chile (Cabrol et al., 2007). In order to
simulate Mars-like operational constraints, during Atacama field operations a team
of geologists and biologists commanded the Zo€ rover once per day from Pitts-
burgh (Wettergreen et al., 2005).

We performed two main science autonomy experiments (Figure 8.2). Our first
experiment deployed an automatic life detection system in the field, providing us
with valuable experience integrating science autonomy technology with onboard
software systems and with the command cycle of remote science operations. Our
second experiment tested POMDP planning technology for efficiently mapping
the distribution of life in a controlled outdoor environment. Together, these exper-
iments address different challenges that will be relevant to future field deployment
of POMDP planning for robotic exploration, and for science autonomy in particu-
lar.

As we will see in our discussion of the LifeSurvey problem (§8.4), POMDP
planning is well suited to robotic exploration domains. Unknown features of the
rover’s environment can be cleanly modeled as POMDP state uncertainty, and
noisy sensors can be modeled with POMDP probabilistic observations. However,
realistically scaled problems remain intractable. We were able to approximately
solve instances of LifeSurvey only by combining nearly all of the POMDP plan-
ning improvements covered in this thesis. By some measures, these POMDPs are
among the largest ever solved.

209



8. Science Autonomy

Figure 8.1: The Zog rover platform in the Atacama desert.

A

realistic mission
integration

Automatic life detectio
Section 8.3

S E E o EEEEEEm

nI | : POMDPs in the field
.

Efficient mapping

(Future work)
[ Section 8.4

Figure 8.2: Our experiments build towards field deployment of POMDP planning

for robotic exploration.

capable probabilistic
planning

8.1 Related Work on Science Autonomy

There has been considerable previous work on science autonomy; we briefly touch

on relevant research in several areas.

8.1.1 Onboard Science Data Analysis and Selective Data Return

Science autonomy systems often need to identify interesting targets for potential
sensor measurements. Several groups have used stereo images to find rocks based
on their height above the ground plane (Gor et al., 2000; Fox et al., 2002; Pedersen,

210



8.1. Related Work on Science Autonomy

2002). These methods can reliably find large rocks on flat ground, but they cannot
usually identify small or partially buried rocks and their range is limited to around
10 m. A second method reduces rock detection to the simpler problem of finding
shadows (Gulick et al., 2001). This strategy finds a point on the rock’s surface
but does not find the outline of the rock, which can make subsequent classification
more difficult. Several other methods detect rocks based on their contrast with
the background in terms of albedo, color, or texture. For example, Castafio et al.
(2004) look for closed shapes with an edge detector. This technique works best for
finding a small number of rocks with high accuracy.

One can think of images as consisting of multiple channels of information,
such as intensity, shading and stereo disparity. Rocks that are clearly distinct from
background in one channel may not be in another. Thompson et al. (2005a) devel-
oped a detection system that segmented distinct regions on several channels, then
passed all the regions to a Bayes net that classified them as rocks, shadows, or non-
rocks. The classifier returned meaningful probabilities that could be used to trade
off precision vs. recall.

Given rock outlines, one can automatically calculate shape measures like cir-
cular variance and Diepenbrok roundness. Dunlop (2006) suggests that these mea-
sures correlate well with Crofts’ roundness and sphericity measurements, which in
turn are useful indicators of how rocks were created and transported. Spectral prop-
erties also offer mineralogical information for geologic classification. The Robotic
Antarctic Meteorite Search (Pedersen et al., 2001) integrated spectroscopy and vi-
sual imagery to find and classify meteorites during robotic traverse on the Elephant
Moraine plateau. Pedersen (2001) demonstrates statistical models of the local en-
vironment that use contextual cues to improve classification performance by the
explorer robot. More recently, Bornstein and Castafio (2005) have demonstrated
automatic classification of carbonate minerals using spectral characteristics.

A natural extension of autonomous rock detection and classification is the gen-
eration of automatic geologic signatures—profiles describing the distribution of
rock classes at a site (Thompson et al., 2005b). These geologic signatures reveal
subtle geologic trends, the borders between geologic units, and sudden changes
compared to neighboring locales. All of these onboard analyses can inform adap-
tive measurement or return decisions. An experiment analyzed a traverse consist-
ing of five neighboring locales in the Atacama Desert. It suggested that site pro-
files based on autonomous rock detection correlated with the principal distinctions
in surface composition identified by a human at the site. Later, Thompson et al.
(2006) detected changes in geological profiles over a long traverse and used them
to prioritize novel images for data return.

211



8. Science Autonomy

8.1.2 Scientist Priorities

Scientist priorities specify which types of features or datasets are most interesting
and thereby determine the goals of a science autonomy system. Chien et al. (2005)
describes a simple preference model that does not distinguish the relative priori-
ties of different feature classes. This strategy was used for the Autonomous Sci-
encecraft Experiment conducted aboard the Earth Observing One (EO-1) orbiter.
Transient phenomena such as floods, fires, and volcanic activity were captured us-
ing autonomous retargeting of a high-resolution imager, where manual retargeting
would have been too slow.

Castafio et al. (2003b) proposed three more expressive models for science
value. Scientists using the target signatures strategy assign priority scores to par-
ticular classes of features. If the rover downlink budget is oversubscribed, the rover
can use the scores to return the most informative subset of the collected data. This
approach has the disadvantage that scientists can only prioritize classes of features
that they can anticipate in advance. Using the representative sampling strategy,
the rover builds a statistical model for observed features on the fly. It groups the
data into clusters with the object of returning a data set containing examples from
each significant group of observed features. Using the novelty detection strategy,
the rover prioritizes features that do not fall into any known class, presuming that
these features are interesting precisely because they are unusual.

Smith et al. (2005) proposed an integrated approach encompassing all three of
these strategies. It worked by supplementing prespecified target signatures with
new target signatures for unanticipated classes. The new target signatures were
prioritized based on scientist interest in representative sampling and novelty detec-
tion.

8.1.3 Science Autonomy Planning Systems

There has been considerable research on planning systems for planetary surface
rovers (Estlin et al., 2002; Urmson et al., 2003; Tompkins, 2005), achieving notable
success with the MAPGEN and GESTALT planners used by the Mars Exploration
Rovers (Bresina et al., 2005; Maimone et al., 2006). Our discussion will focus
narrowly on controllers that either use probabilistic planning or have the ability to
react to science observations collected on the fly.

The Antarctic meteorite search of Pedersen (2001) selected sensing actions
greedily in order to reduce the uncertainty in rock/meteorite classification accord-
ing to a Bayesian network model. Although its action selection was myopic, this
system was notable for its principled use of a probabilistic model to handle uncer-
tainty.

212



8.2. Robotic Investigation

Moorehead (2001) studied prioritized coverage planning for rover exploration.
The planner started with a partial map and executed a coverage pattern by greed-
ily selecting motion actions to maximize information gain according to specified
metrics, for instance determining traversability or observing as much terrain of a
specific type as possible.

Estlin et al. (2003) developed a planner for inserting opportunistic science ac-
tions into a realistic rover command sequence. Their CASPER planner is sophis-
ticated enough to reason about such issues as detailed path planning, instrument
warm-up periods, and instantaneous power constraints that prevent rover subsys-
tems from operating simultaneously. It successfully inserted rock measurement
actions into a rover traverse as part of an integrated demonstration of the OASIS
system in a controlled outdoor environment. CASPER was also used to insert
opportunistic science actions into observation plans onboard the EO-1 spacecraft
(Chien et al., 2003).

Dearden et al. (2003) generated contingent plans that were robust with respect
to uncertainty about the resources that actions would consume. One could use the
same contingent plan representation to build in slack for opportunistic science.

Smith (2004) developed a system for optimally dropping and reordering actions
when rover resources are oversubscribed. Pedersen et al. (2006) described an inte-
grated demonstration using Smith’s oversubscription planner to insert new science
tasks on the fly as they were requested by the human members of a human-robot
team.

8.2 Robotic Investigation

Beginning in 2005, Carnegie Mellon’s “Science on the Fly” project investigated
science autonomy technologies for use in planetary science applications. It fo-
cused on capabilities for science operations that involve long over-the-horizon tra-
verses, including autonomous detection and classification of rocks, autonomous
spectroscopy, science goal representations and planning. A partnership with the
“Life in the Atacama” (LITA) project, funded by NASA’s ASTEP astrobiology
program, provided a unique opportunity to test autonomous science technologies
as an integrated part of an exploration robotics field campaign.

The LITA project aimed to survey the distribution of extremophile life and
habitats in the Atacama, a Mars-analog desert in Chile. The three Atacama field
campaigns visited six field sites (Figure 8.3): sites A, B and D were located in
the “humid zone” near the Coastal Range; sites C and F were in the arid core of
the desert; site E was deeper into the central depression. Scientists explored the
desert remotely using an autonomous rover commanded from North America. Re-

213



8. Science Autonomy

-208

e lquique
Sites A
DB
® Calama
[ ]

. San Pedro
S_IEG E de Atacama
Antofagasta -2

-28 S

100 km

Figure 8.3: Map showing the location of LITA field campaign sites. From Cabrol
et al. (2007).

mote operations enforced space-relevant constraints such as limited bandwidth and
a single daily command cycle. This permitted research into extremophile habitats
while simultaneously testing operational strategies to exploit navigational auton-
omy in fast rovers (Cabrol et al., 2007).

The project utilized Zog€, a solar-powered rover capable of single-command
autonomous navigation of multiple kilometers (Figure 8.1). Its instrument suite
included a mast-mounted pan-tilt unit with narrow-field panoramic cameras (pan-
cams) and fixed forward-facing navigation cameras (navcams). It also carried

214



8.2. Robotic Investigation

Figure 8.4: The microscopic fluorescence imager deployed and spraying under-
neath the robot.

an integrated microscopic imager capable of detecting chlorophyll or bacterial
colonies. An onboard sprayer deposited fluorescent dyes which would bond to
living organisms after a short incubation period (Figure 8.4). The microscopic
imaging apparatus would induce fluorescence with a flashlamp. Subtracting am-
bient light left only the fluorescence from bonded dyes, an in situ image of any
organisms that were present. Finally, the science team used orbital imagery from
ASTER (Abrams, 2000), Hyperion (Pearlman et al., 2001), and IKONOS (Dial
et al., 2003) as an integral part of planning over-the-horizon traverses. Details
about science instrument payload are given by Cabrol et al. (2007) and Waggoner
et al. (2007).

The science goals of the LITA project were particularly amenable to science
autonomy. The scientists attempted to complete a wide-area biogeologic survey in
a short time by visiting new environmental units whenever possible. The data col-
lected during these traverses involved areas that scientists had not seen previously.
However, they expected that extremophile habitats would be distributed in isolated
patches and oases of life that could be targeted with a “follow-the-water” strategy.

Because of the sparsity of microhabitats, data collected during a long traverse
were expected to contain a few positive images containing life mixed with a large
number of negative images. The extensive measurements required to verify life
at any single location were expensive in terms of rover time and limited amounts
of experimental dye resources. It was hypothesized that science autonomy could
manage these resources more efficiently by performing life-detection experiments
selectively in response to more expedient observations.

215



8. Science Autonomy

Scale Features Data products Relevant autonomy
Detection and mapping of
1000 Geologic geologic boundaries
m
units ) )
. Analysis of traverse image
100 m Site O;b‘ttal sequences
signatures Navcam ata ] .
sequence Active locale mapping and | Saction 8.4
10 m Image signatures survey
Automatic locale
Pancam N
profiles
I m panorama
0.1m Individual
rocks aves
Pancam N.dw'dm Rock detection and
0.01 image 1mage classification
.01 m
Fluorescence Micro-
scopic
image Microscopic image analysis | Section 8.3

Figure 8.5: Science autonomy experiments in the LITA project dealt with instru-
ments and features at multiple scales.

We present experiments in two specific autonomous science domains (Fig-
ure 8.5). §8.3 demonstrates autonomously responding to evidence of life with
followup measurements, specifically reacting to chlorophyll fluorescence detected
using a microscopic imager. §8.4 details probabilistic planning to efficiently map
the distribution of life. Here, an active mapping system moves the rover to new
locations in response to collected data.

8.3 Autonomously Responding to Evidence of Life

The LITA campaign strategy for unambiguously detecting life was to search for
spatially correlated fluorescence signals from several distinct types of biomolecules
using the robot’s onboard microscopic fluorescence imager (FI). The full protocol
of FI measurements at a locale was resource-intensive, taking approximately 23
minutes and using fluorescent dye from a limited onboard stock.

However, since the emphasis was on finding locales with positive signal from
as many distinct biomolecules as possible, we were able to improve overall effi-
ciency by terminating the protocol early if initial signals came back negative. In
this way we saved rover resources without sacrificing high-value unambiguous de-

216



8.3. Autonomously Responding to Evidence of Life

tections of life.

We divided the full protocol into two segments: (1) Check quickly for natural
chlorophyll fluorescence; (2) Only if chlorophyll was detected through onboard
image analysis, autonomously respond by performing followup measurements with
dyes to detect other biomarkers. In the common case that the result from step (1)
was negative, the modified protocol took only eight minutes to complete and did
not consume any dye. Our field evaluation confirmed that the improved protocol
significantly improved overall efficiency.

8.3.1 The Fluorescence Imager (FI) Instrument

Figure 8.4 shows the FI, a down-pointing camera mounted on the bottom of the
Zoé rover (Waggoner et al., 2007). It has a 10 cm field of view and transverse
resolution of 210 ym. During autonomous response experiments, the sampling
location under the FI was chosen by stopping the rover at fixed distances along its
traverse, and the camera was deployed and auto-focused using z-axis motion.

The FI could detect either the reflectance or fluorescence of a sample in various
channels. A xenon flashlamp provided illumination. Servos could select one of six
optical interference filters for the excitation path between the flashlamp and sample,
and one of ten filters for the emission path between the sample and CCD.

The FI captured reflectance under a combination of sunlight and flashlamp il-
lumination with no excitation filter. In RGB color mode, separate images with
red, green, and blue emission filters combined to create a visual color image. In
fluorescence mode the FI captured a greyscale intensity image with excitation and
emission channel pair selected to respond to the fluorescence of the molecule un-
der study, either naturally fluorescent chlorophyll or an artificial marker dye whose
fluorescence increased when bound with a biomolecule. Different marker dyes re-
sponded to DNA, proteins, lipids, and carbohydrates. An automatic sprayer could
spray the sample with water to enhance chlorophyll fluorescence under dry condi-
tions. It could also spray a solution that contained all four marker dyes along with
acid and detergent to aid dye penetration.

8.3.2 Chlorophyll Detection Experimental Procedure

The FI protocol for each sample had two phases: (1) The FI sprayed water and cap-
tured several images, including a chlorophyll image used to determine if followup
was warranted. (2) It sprayed the dye mixture and captured several images, includ-
ing dye fluorescence images. Execution times for the phases were approximately
8 and 15 minutes, respectively.

217



8. Science Autonomy

periodic
initial sample sample chlorophyll continue
phase type? detected? traverse
full sample yes dye |
followup

Figure 8.6: Sample protocol flowchart.

180 m

[
I‘

30 m
j—>]

e 0 0 0 __0 4N

D = full sample
O = periodic sample

o |
=1

Figure 8.7: Periodic sampling traverse.

Scientists could command two types of sample. A full sample always included
both phases of the protocol. A periodic sample always included phase 1, but con-
tinued to phase 2 only if chlorophyll was autonomously detected (Figure 8.6).

Scientists used the autonomous followup capability during 180 m periodic sam-
pling transects (Figure 8.7). At each endpoint of the transect, the rover stopped and
took a full sample. At 30 m intervals within the transect, the rover stopped and took
a periodic sample. The rover executed each traverse autonomously within a single
command cycle (including both driving and FI samples).

In keeping with the LITA high-mobility exploration strategy, the science team
decided to add a followup quota ensuring that the rover would not dwell too long
on a particular transect. At most three periodic samples per transect could trigger
followups. After filling this quota the rover would not spray dye on subsequent
samples even if it detected chlorophyll.

8.3.3 Chlorophyll Detection Image Analysis

Autonomous chlorophyll detection, used only for periodic samples, relied on a
single image of chlorophyll fluorescence intensity (excitation 450 nm, emission
740 nm) captured after the FI sprayed water on the sample. This was called the
“trigger image” (Figure 8.8).

The detection algorithm reported the probability that chlorophyll was present
anywhere in the image, triggering an autonomous dye followup if the probability
was 50% or higher. The algorithm reported a high probability if there were any

218



8.3. Autonomously Responding to Evidence of Life

Figure 8.8: Autonomous chlorophyll detection: (top left) Portion of FI visual color
image containing a lichen. (top right) Chlorophyll trigger image. (bottom left) An
intermediate step of image processing; the brightness in each cell represents the
estimated probability that it contains chlorophyll. (bottom right) After autonomous
followup, the FI detected fluorescence from the DNA marker dye.

bright patches in the image. First it formed a sub-sampled image by splitting the
original image into 4 x 4 cells and calculating the mean intensity A(x,y) over each
cell. This smoothing eliminated false detections from single-pixel shot noise. Sec-
ond, it converted mean intensity for each cell to a probability L(x,y) that the cell
contained chlorophyll using a sigmoid or “fuzzy threshold” function o,g. Finally,
it calculated the overall probability L of chlorophyll being present in any cell of
the image by combining the probabilities from individual cells using the heuristic
assumption that the L(z, y) measurements were uncorrelated.

Let I(z,y) denote the pixel intensity at position (z,y) in the original image.
We have

3 3
Az,y) = % > I(dx + Az 4y + Ay) (8.1)
Axz=0 Ay=0
L(z,y) = oap(A(z,y)) = (1 +exp(a+ BA(z,y))) " (8.2)
L = 1-]J-L(z,y)). (8.3)

T,y

The fuzzy threshold function o3 used to convert cell intensity to probability of
containing chlorophyll had two parameters « and 3 whose values were tuned using

219



8. Science Autonomy

training data. The training data were gathered by manually labeling the presence
or absence of chlorophyll signal in individual 4 x 4 cells of two trigger images
containing lichens, based on morphological cues from both the trigger image and
an associated visual color image.

Let n = 2 denote the number of training images, let A;(x,y) denote the mean
intensity in cell (x, y) of the subsampled version of the ith labeled image, and let
L¥(z,y) denote the corresponding manual label, with value 1 or 0 indicating the
presence or absence of chlorophyll in the cell. The parameters « and 3 were set to
maximize the likelihood of the manual labels using logistic regression.

(0, 8) = max HH(1—|L (2,) — oy (Ailw,9))]) B4)

/ 2
(QBER 1oy

While every labeled training image contained significant instances of chloro-
phyll fluorescence, many images from the Atacama Desert did not. To account
for this discrepancy we included an additional parameter 7 that represented a prior
on the probability of finding chlorophyll in the image (equivalently, the proportion
of the ground surface expected to be covered by photosynthetic organisms). This
transformation, applied after training is complete, yields

Tgaﬂ(A(J:? y))
TO'ag(A($, y)) + (1 - UQB(A(LU,:U)))

The value of L was then calculated from L(x,y) using eq. (8.3) as before. We
informally hand-tuned 7 on a set of test images so that most images would fall on
the correct side of the followup threshold (negative images below 50%, positive
images above 50%). The resulting value of 0.005 was used for all of the reported
results.

L(z,y) (8.5)

8.3.4 Chlorophyll Detection Experimental Results

The autonomous response system was evaluated onboard the rover during the 2005
Atacama field campaign. Our data set included 24 periodic samples collected dur-
ing five transects. Periodic samples occurred at 30 m intervals and the standard
transect length was 180 m, so nominally each transect should have included five
periodic samples. In practice, the commanded lengths of the transects varied due
to small positioning errors in the operator interface. As a result, transects could
contain 4-6 periodic samples. Some transects were cut short for other reasons.
Nightfall ended the last transect after only two periodic samples. In two of the

220



8.4. Efficiently Mapping the Distribution of Life

transects the rover filled the followup quota before the last periodic sample; we
excluded later periodic samples from the analysis because the quota prevented any
further followups.

Each sample image set was analyzed by a remote team that included field biol-
ogists and fluorescence experts. Using both the visual color image and the trigger
image, they labeled the samples as positive (contains significant evidence of life) or
negative (does not). We compared the scientist labels to the autonomous followup
response.

The autonomous system and expert labels agreed for 19 of the 24 samples. 8
of the 24 samples were positive; 7 of the 11 samples chosen for autonomous fol-
lowup were positive. Thus the yield, or proportion of dye samples that occurred
after positive evidence of chlorophyll, was 90% higher when applying the science-
aware system than would have been expected for randomly selected samples (sig-
nificance level < 0.01 using one-tailed Fisher’s exact test). In other words, relative
to a baseline strategy of always applying dye, the science-aware system skipped
13 dye samples, saving more than three hours of robot time, while following up
chlorophyll detection correctly in 7 out of 8 cases.

We were able to diagnose the cause of failure in some but not all cases. For
example, a false positive could occur when the FI was dazzled by direct sunlight
(normally it is shaded by the robot). A false negative could occur when the water
spray failed to reach the sample due to high winds. These failures could be ad-
dressed by hardware modifications or by limiting FI operations to certain times of
day. The image analysis could also be made more robust to corrupted images by
diagnosing problems like dazzling and poor focus based on the image, or by adding
more definitive cues such as squamous lichen morphology to the analysis.

8.4 Efficiently Mapping the Distribution of Life

One of the ultimate goals of rover exploration is to build maps that relate to mod-
els of the environment. For instance, in the Atacama, surface habitats for lichens
and bacteria can be created by terrain features that locally modify air flow and
insolation. The interaction of these variables with the presence of life is poorly
understood. We propose a form of representative sampling called “sampling by
regions” to efficiently answer this type of question.

Under the sampling by regions strategy, regions with homogeneous properties
are identified in orbital imagery. The rover is used to characterize aspects of each
region that cannot be measured from orbit. In the Atacama, orbital data can be
used to study frequency of cloud cover, landforms that control airflow, and average
slope, which affects insolation and wind exposure. One can identify local regions

221



8. Science Autonomy

Figure 8.9: Representative sampling strategy at multiple scales.

that are relatively homogeneous with respect to these properties, and then address
the properties’ relationship to viable habitats by using the rover to characterize the
presence or absence of life on a per-region basis.

8.4.1 Mapping Scenario

To operationalize sampling by regions, one can describe the environment using
the different size scales shown in Figure 8.9. At large scale (kilometers, upper
map), scientists designate a path based on long-term mission goals. At small scale
(hundreds of meters, lower map), the rover’s path should be optimized to travel
through regions relevant to the modeling objectives. In the lower map, region
boundaries are indicated with solid lines and the rover’s path is marked with a
dashed line.

Within the rover’s field of view (tens of meters) in the small scale map, the rover
should scan the environment and react appropriately if it detects cues associated
with life, such as visible plants or signs of gully erosion. This reaction might
include taking a detour toward the feature and gathering additional data to confirm
the presence of life. In the lower map, detected features are marked with black
circles; note that the rover has adjusted its path to visit them.

We developed an onboard system that intelligently controls rover motion and
sensing at a small scale, while respecting the constraints of the large scale plan
specified by scientists. The first step is off-board probabilistic planning based on

222



8.4. Efficiently Mapping the Distribution of Life

large-scale goals and a region map provided by scientists. This generates a robust
policy that specifies how to react to different potential science instrument readings
during execution. During traverse the rover refers to this policy to choose appro-
priate actions based on the actual instrument readings. In effect, it continuously
replans the remainder of the traverse based on what it sees.

The probabilistic planning system attempts to generate the most efficient ex-
ploration policy. In order to define optimality, where there are multiple interact-
ing goals, each goal must be assigned a relative priority that allows the system to
perform appropriate trade-offs. Our scenario encodes these priorities by specify-
ing a per-region reward for finding evidence of life and penalties for taking time-
consuming actions.

In addition, one must specify how to deal with uncertainty. If a plan includes
searching a region for life, and it is unknown whether the region contains life, one
cannot evaluate in advance how successful the plan will be. We choose to model
the problem as a POMDP, which means we take a risk-neutral decision-theoretic
perspective toward uncertainty. Uncertain aspects of the environment model and
uncertain outcomes of rover actions are modeled probabilistically, and the optimal
plan is the one that has the highest expected or “average” value.

8.4.2 LifeSurvey Problem Definition

We evaluated our tactical replanning system onboard the Zo€ rover in a controlled
outdoor test site in Pittsburgh (Figure 8.10, right). This allowed us to simplify
several aspects of the problem. First, since there were no appropriately distributed
natural features in our test area, we used simple artificial targets (10 cm squares of
white posterboard) as a stand-in for evidence of life.

Second, rather than generating a region map based on satellite images of the
test area, we generated an arbitrary region map by hand and then modified the test
area to match the map. To be more precise, since the region map only specifies the
likelihood of life in each cell, we randomly generated multiple target layouts for
each region map, using the specified likelihoods.

Figure 8.11 shows two region maps and two corresponding randomly drawn
target layouts for each map. Regions are indicated as contiguous groups of cells
with the same shading (some shading tones are reused). Each region is marked
with the probability that cells in that region will contain evidence of life. White
squares in the target layouts indicate the locations of artificial targets.

In keeping with the overall scenario, the region map represented a segment of
a long traverse. The rover started at the left side of the map and had to eventually
exit from the right side in order to conform to the large scale plan.

Figure 8.10 (left) helps to explain the actions available to the rover at each

223



8. Science Autonomy

Figure 8.10: LifeSurvey: (left) Actions available to the rover. (right) The Zo€ rover
at the test site in Pittsburgh.

step of execution. In a single action, the rover could either (1) scan all three of
the marked cells, returning a noisy signal as to whether they contain life, or (2)
perform a simple move or sampling move to any one of the marked cells. Sampling
moves differed from simple moves in that they caused the rover to take additional
detailed measurements as it entered the new cell. They were intended to confirm
the presence of life.

The planning objective was to maximize expected reward. The rover received
a single reward for each region: +50 points if it performed a sampling move into a
life-containing cell in the region; otherwise, +20 points if it passed through a life-
containing cell in the region; otherwise, +5 points if the rover entered the region;
otherwise, no reward. Each action incurred a cost: -1 point for each move, and -5
points for each scan or sampling move. Thus the rover needed to find confirmed
evidence of life in as many regions as possible, while minimizing the number of
detours, scans, and sampling moves.

The observation returned by the scan action was a tuple of three independent
readings for the cells A, B, and C. The possible values for each reading could be

interpreted roughly as “negative”, “maybe”, or “positive”, corresponding to dif-
ferent confidence levels from the onboard detection routine searching for artificial

224



8.4. Efficiently Mapping the Distribution of Life

>

)
§
P
)
\
§
'
i
'

§
§
)
\
)
)
)
:
|

N
1
!
g
.
i
i
i
i

|
}
i
'
|
}
|
)
|
i
i

0.1 0.5

_
=
Il
=
(o))
=
Il
o
=
=
Il
o
(o))
=
Il

p:O, p=

\O]

7 [ T T T T T T 1
N e
o1 1 180 s - s
e [ roor o T T T O ]
e e
X T ] e = s asags

Figure 8.11: LifeSurvey region maps and target layouts.

markers.

The sensor noise parameters used in the planning model were learned from a
training set that included detection routine outputs and ground truth labels gath-
ered over several runs in the testing environment. Cells without markers returned
negative/maybe/positive readings roughly 72%/12%/16% of the time, respectively;
cells with markers had the distribution 9%/5%/86%.

Cells of the map were hexagons, laid out in rows that ran west to east. Com-
pared to a rectangular grid, the hexagonal grid layout had the advantage that there
was a clearer correspondence between the cells that the rover moved through and
the cells covered by its navcam imagery. In contrast, when moving diagonally in a
rectangular grid, the rover would image small portions of several cells as it passed
over a cell corner, making it more problematic to say which cells it sensed.

Due to the relatively small size of the map cells in our experiments, the rover
could not turn sharply enough to move in arbitrary directions. We handled this
problem in two ways. First, the centers of adjacent cells in a row were 10 m apart

225



8. Science Autonomy

and the rows were 3.5 m wide, leading the individual hexagons to have a somewhat
“squashed” aspect ratio. These proportions meant that the motion direction for
northeast and southeast moves deviated from east moves by an angle of only 35°.

Second, the planner was prohibited from commanding sharp turns. The rover
could not travel northeast and then southeast (or vice versa) on consecutive moves;
an east move needed to be present in between. This was handled in the planning
model by adding an extra state variable recording the direction of the most recent
move and penalizing any motion action inconsistent with the turning constraint. '

Readers interested in using the LifeSurvey problem can download CIVA-
compressed flat models in Cassandra’s POMDP model format, along with source
code for generating new problem instances, as part of our freely available ZMDP
software package (Smith, 2006).

We close the LifeSurvey discussion with a more formal specification of the
variables involved. We have:

e Actions. There are seven total actions: three non-sampling move actions
(NE, E, and SE), three sampling move actions (NE+sample, E+sample,
and SE+sample), and one scan action.

e Observations. There are 27 distinct observations. A single scan action
returns a tuple of three independent readings, one for each of the three cells
immediately ahead of the rover. Each cell reading is either negative (—),
maybe (?), or positive (4+). Thus there are 33 = 27 observations in
all, ranging from (—, —, —) to (+,+, +). Actions other than scan always
return a null observation; in order to avoid increasing the number of obser-
vations, our convention is to represent the null observation as (—, —, —).

e State variables. Let there be £ total cells in the region map, forming n
regions. The state of the system can be factored into the following state
variables:

— position. Specifies the cell the rover currently occupies. With &
cells in the region map, position can take on k possible values.
— lastMoveDirection. Specifies the direction of the rover’s last

move. This variable is needed only to enforce the rover’s non-holonomic
motion constraint. Can take on three possible values (NE, E, or SE).

'In POMDP planning it is generally problematic to prohibit use of an action in particular states.
What should happen when, for example, there is a 10% chance that the system is in a state where the
action is prohibited? In part because of this potential for semantic confusion, some model specifica-
tion languages (including the one we use, developed by Anthony Cassandra) do not provide a way to
specify states in which an action is prohibited. We usually work around this limitation by specifying
that illegal actions have no effect (return to the same state) and incur a large penalty.

226



8.5. Experimental Evaluation

— usedScanInThisCell. Specifies whether the scan action has
been used yet in the current cell. Can be true or false. On-
board the rover multiple scans from the same cell typically give iden-
tical results, so that after the first scan subsequent scans are useless.
We added the usedScanInThisCell variable to prevent the plan-
ner from trying to use redundant scans. In the planning model, if
usedScanInThisCell is true and the scan action is applied, it
returns a null observation and incurs a large “illegal action” penalty.

— lifeInCell. (¢ =1,...,k). Specifies whether cell ¢ contains life.
Can take the values 1ife (L) or no—-1ife (N). With k cells in the
region map, there are 2¥ possible joint values for the 1ifeInCell
variables.

- rewardInRegion, (r = 1,...,n). Specifies the largest reward
level achieved by the rover so far in region r. Recall that the rover
can get different rewards for characterizing a region in different ways
(+0, +5, +20, or +50), but in the end receives only the most valuable
single reward from each region. The rewardInRegion variable is
needed to keep track so that rewards are not double-counted. With n
regions, there are 4™ possible joint values for the rewardInRegion
variables.

Thus the number of possible joint assignments to all state variables is |S| =
k x 3 x 2 x 2F x 4", For the two region maps used in our experiments:

— The LifeSurveyl problem instance uses region map 1 from Figure 8.11.
It has k = 63 and n = 5, which gives |S| = 3.57 x 10?4 in the naive
flat model representation. After CIVA compression (see Chapter 7),
the compressed flat model has |S| = 7, 001.

— The LifeSurvey?2 problem instance uses region map 2 from Figure 8.11.
It has k = 63 and n = 6, giving |S| = 1.43 x 10?°. After CIVA
compression, |S| = 7, 841.

8.5 Experimental Evaluation

We compared the performance of three planners on several versions of the LifeSur-
vey problem, both onboard the robot and in simulation.

227



8. Science Autonomy

8.5.1 LifeSurvey Planners: Blind, Reactive, and POMDP

We evaluated three planners. Under the blind planner, the rover simply moves
to the right in a straight line, always using sampling moves. The blind planner’s
policy confirms the presence of life only if it is found on the straight-line path.

Under the reactive planner, the rover follows a set of hand-generated rules de-
signed to confirm the presence of life through combined use of scanning and sam-
pling. At the beginning of the run, the reactive planner selects a reference path to
use throughout the run (the selection process is explained later).

Once the reference path is selected, the policy is extremely simple. The rover
moves along the reference path, scanning after every move action. If a cell returns
a positive scan result, the rover performs a sampling move to the relevant cell,
detouring off the reference path if necessary. (However, cells with a positive scan
reading are ignored if they are in a region where the rover believes it has already
confirmed the presence of life.) After taking a detour the rover drives back towards
the reference path, as long as that does not conflict with sampling cells that return
a positive scan reading. This kind of simple reactive policy is often appealing to
domain experts because it is so easy to understand.

The most complicated part of the reactive planner is the initial selection of the
reference path. The planner calculates a heuristic value for each path and selects
the path with the highest value. The heuristic value of a path is an estimate of
the expected number of regions where the presence of life will be confirmed if the
rover follows that path, under some strong simplifying assumptions.

The heuristic (1) calculates the number n,(z) of distinct cells that will be
scanned in each region 7 if the rover follows path z (ignoring the possibility of
detours), and (2) assumes that if any of the scanned cells in region r contains life,
the rover will confirm the presence of life in region 7 (ignoring the effect of sensor
noise in the scan action). Let p, be the prior probability that any individual cell in
region 7 contains life. Under these assumptions, the expected number of regions
where the presence of life will be confirmed is

Viz) =3 [1 = (1 - p)@)]. 8.6)

r

Given a map on the scale of region maps 1 and 2 (see Figure 8.11), the number of
paths through the map is large enough that brute force evaluation of V' (x) for all
paths is intractable. However, by structuring the search appropriately and using an
admissible pruning technique, we were able to find the reference path maximizing
V (x) after evaluating only a few thousand paths, taking less than two seconds.
The third planner generated an approximately optimal POMDP policy. The
LifeSurvey POMDP problems we worked with were extremely challenging. All of

228



8.5. Experimental Evaluation

Planner | Search actions Regions confirmed Reward
Blind 12.0 £ 0.0 254+00 68+ 0
Reactive 20.0 £ 0.7 34+06 6119
POMDP 75+ 1.0 30£05 113+16

Table 8.1: LifeSurvey onboard testing: planner performance.

our computation was performed on a 3.2 GHz Pentium-4 processor with 2 GB of
main memory.

We refer to region map 1 from Figure 8.11 as the LifeSurveyl problem. With
a naive flat model representation, LifeSurveyl would have had 3.5 x 10%* states.
We used the CIVA state abstraction method presented in Chapter 7 to generate a
compressed flat model with only 7,001 states. Less than two seconds were required
to generate and write out the compressed model.

We approximately solved the compressed POMDP using focused value itera-
tion. The mask/prune representation was used for the lower bound, the mask
representation was used for the upper bound, and FRTDP was used for heuristic
search. After 10® seconds (about 20 minutes) of wallclock time, the solver was
able to produce a policy whose expected long-term reward was guaranteed to be
within 20% of the optimal policy.

Chapters 4 and 6 also report comparative performance for other variants of
focused value iteration as applied to the CIVA-compressed LifeSurveyl problem
instance.

8.5.2 Onboard Testing

The reactive and POMDP planners were each evaluated on 20 runs of the robot
through the test course. Two region maps were used, designated “1” and “2”; thus
each planner generated two policies, one for each map. Four target layouts were
randomly drawn, two for each region map, designated “1A”, “1B”, “2A”, and “2B”.
For each planner, the robot ran the test course five times through each of the four
target layouts, giving the total of 20 runs per policy. Figure 8.11 shows the region
maps and target layouts.

The blind planner was evaluated on the same four target layouts in simulation,
and the results are reported alongside the onboard results for the other planners;
this comparison is valid because the only source of randomness from the environ-
ment is sensor noise, and the actions selected by the blind policy do not depend on
observations.

Results are shown in Table 8.1. All reported values are mean values across the

229



8. Science Autonomy

20 onboard runs. We also report a 95% confidence interval for the mean value,
estimated using the bootstrap method. Note that, since the reward received by the
blind policy is a deterministic function of the target layout, the blind policy results
could be estimated exactly by averaging over the four target layouts.

“Search actions” gives the number of scan and sampling move actions used per
run (smaller values are better). “Regions confirmed” gives the number of regions
in which the presence of life was confirmed with a sampling move action (higher
values are better). “Reward” reports the mean reward received (higher values are
better).

The POMDP policy performed best in terms of search actions and reward, by
statistically significant margins. The reactive policy confirmed the presence of life
in more regions, but at the cost of many more search actions than the other policies.

8.5.3 Simulation Testing: Adapting to Changes in the Problem

The POMDP planner has the desirable property that it is model-based, meaning
that its policy is completely derived from the system model, with no “hidden pa-
rameters” that must be manually adjusted in order to achieve good policy quality
if the problem changes. We hypothesize that this model-based planning approach
should provide better robustness across changes in the problem than the blind and
reactive planners.

To test this hypothesis, we compared the performance of the three planners un-
der different variations of the LifeSurveyl problem (that is, the LifeSurvey problem
with region map 1). Specifically, we adjusted the relative magnitude of costs and
rewards; all action costs were multiplied by a constant factor ¢, called the cost mul-
tiplier. We tested five settings of ¢ ranging from 0 to 2. With ¢ = 0 all actions
are free, with ¢ = 1 we recover the original LifeSurvey problem, and with ¢ = 2
actions are significantly more costly than usual. We expect that changes to c in turn
change the optimal policy by making more or fewer search actions worthwhile in
the sense that their expected reward outweighs their cost.

We used the POMDP planner to generate five policies, one for each setting of
c. As before, the POMDP planner was run on a 3.2 GHz Pentium-4 processor with
2 GB of main memory. We ran the planner for 10% seconds, about 20 minutes, to
generate each policy. (Note that, in between the onboard testing and simulation
testing, we made minor improvements to the POMDP planner implementation, al-
lowing it to converge slightly faster.) The blind and reactive planners are unaffected
by ¢, so their policies were the same across all versions of the problem.

Each policy was tested on each setting of ¢ for 10° runs in simulation. All sim-
ulation runs used the same region map, with a new target layout drawn randomly
for each run. The system model used in simulation was identical to the model

230



8.5. Experimental Evaluation

Search actions vs. cost multiplier

30 g T T T
25 e -
D G A e - -+
15 ‘E] -
10(_ A ~_~\‘~“\J A _\')
s ! oo e
0 0.5 1 1.5 2
Regions confirmed vs. cost multiplier
3.8
36 ! ! ! |
34 —
32 - TTHL -
3 -
R . 1
24 = o §~\ - =N »
>3 T T P
0 0.5 1 1.5 2
Reward vs. cost multiplier
200 5 T T T
150 - el —
100 o
50
0
-50
-100

Blind —6— Reactive ——+- POMDP --{d--

Figure 8.12: LifeSurvey simulation testing: planner performance vs. cost multi-
plier.

provided to the POMDP planner. Reported performance measurements are mean
values over all runs. Due to the large number of runs, the radius of the 95% confi-
dence interval for the mean was small, at most 0.08 for any measurement; thus we
do not report individual confidence intervals.

Figure 8.12 presents performance variations as a function of the cost multiplier.
The performance measures “Search actions”, “Regions confirmed”, and ‘“Reward”
are defined as in Table 8.1.

The blind and reactive policies are the same regardless of ¢, so their perfor-

231



8. Science Autonomy

mance in the “Search actions” and “Regions confirmed” plots is constant, and their
performance in the “Reward” plot is a linear function of ¢ whose slope is deter-
mined by the mean cost the policy incurred in the original model. The reactive
policy incurs more cost, so its reward decreases more steeply as c increases. The
two lines are seen to cross near ¢ = 0.5.

In contrast, the POMDP planner automatically adjusts its policy as c increases,
using fewer search actions and confirming life in fewer regions as a result. It out-
performs both the blind and reactive planners by a wide margin over all values of
c. We also tried to understand the detailed behavior of the POMDP planner as ¢
varied:

e ¢ = 0: When the cost multiplier is zero, no costs are incurred for any action.
In this context, it is easy to see that: (1) on entering a new cell, it is always at
least as good to scan as to make a move, since the scan action has no cost and
often provides useful information; (2) sampling moves are always at least as
good as non-sampling moves, since there is no cost difference and sampling
often has some chance of providing reward. In viewing simulation traces
from the POMDP planner, we observe that it visits all the regions, scans
after about 90% of all moves, and never uses a non-sampling move. The
focused value iteration bounds indicate that the value of the optimal policy
lies in the interval [179.5, 184.5].

e ¢ = 0.5: At this cost level, the POMDP planner uses the scan action about
50% of the time, and about 50% of its moves are sampling moves. It is not
always clear why the planner chooses to scan in one location, blindly sample
without scanning in another, and simply pass by a third; presumably a num-
ber of factors influence the decision, and a full explanation would involve
looking at how they balance quantitatively.

One somewhat surprising behavior is that after receiving a positive scan read-
ing and sampling that cell, the planner sometimes samples a second cell in
the same region, apparently just to be sure that at least one of the samples
contains detectable life. This is not something that would necessarily oc-
cur to a human policy designer. The value of the optimal policy lies in the
interval [124.9,139.2].

e ¢ = 1: The POMDP planner uses the scan action about 30% of the time, and
uses sampling moves about 20% of the time. Scan actions are now mostly
applied to high-value regions with p = 0.5. The value of the optimal policy
lies in the interval [94.4,103.4].

e ¢ = 1.5: At this high cost level, the POMDP planner’s policy is particularly

232



8.5. Experimental Evaluation

easy to understand. It uses a low-effort strategy to confirm the presence of
life in the three high-value regions with p = 0.5, completely ignoring the
two low-value regions with p = 0.1.

Two of the high-value regions are relatively large. The planner deals with
those regions by applying a single scan action from a location where all three
forward cells are in the high-value region; it then uses a sampling move if one
of the cells gives a positive reading. One of the high-value regions contains
only a single cell. The planner deals with this region by blindly sampling the
single cell without a preceding scan action. The value of the optimal policy
is 75.0.

For the cases ¢ = 1.5 and ¢ = 2, the POMDP planner was able to exactly
solve the problem up to our desired regret bound of ¢ = 103 within the
allotted time. These versions of the problem appear to be easier because
the heuristic search can use its upper bound to avoid evaluating the majority
of policies, in particular the longer plans that are too costly because they
include many scan actions and detours.

e ¢ = 2: The policy is broadly similar to that with ¢ = 1.5. The small dif-
ferences in search actions and regions confirmed are due to (1) following
a slightly different path, and (2) different responses to certain observations.
(For example, if a scan returns multiple positive readings, the policies may
differ in terms of which forward cell they choose to sample, for reasons that
are not clear.) The value of the optimal policy is 57.4.

We can also compare the simulation results with ¢ = 1 to the onboard re-
sults in Table 8.1. We are pleased to see that the performance ordering across all
three performance measures is the same, although the actual values differ. There
are a number of possible explanations for the differences, most obviously that the
onboard testing reports an average result over region maps 1 and 2, whereas the
simulation testing focuses on region map 1 only.

These results show that the POMDP planner can successfully adapt its policy to
changes in the problem, significantly outperforming the blind and reactive planners
across all values of c. We also analyzed some of the interesting strategies that were
automatically generated by the POMDP planner.

8.5.4 Simulation Testing: Robustness to Model Error

Future planetary exploration robots are unlikely to have access to accurate prob-
abilistic planning models for novel environments. Especially early on, the proba-
bilities specified by their planning models are likely to be rough a priori estimates

233



8. Science Autonomy

from domain experts or learned values from terrestrial environments that may differ
significantly from the target environment. As a result, it is important to understand
how robust the POMDP planner is to model errors. If it only shows strong perfor-
mance when it has access to an extremely accurate planning model, it may not be
as useful for real exploration applications as our earlier experiments suggest.

In order to study this issue, we ran a series of simulation experiments in which
the simulation model was held constant, but the planning model was corrupted.
Specifically, in the planning model only, we systematically changed the prior prob-
abilities that cells contained life, multiplying all priors by a constant factor ¢, called
the prior multiplier. We tested five settings of ¢ ranging from 0 to 2. With ¢ = 0 the
planner believes with certainty that there is no life present, with ¢ = 1 the planning
model has uncorrupted priors, and with ¢ = 2 the planning model significantly
overestimates the priors.

We chose this type of systematic error because it is easy to inject into the plan-
ning model, and because its structure is simple enough that the resulting policy
changes should be easy to understand. Of course, a real implementation of an ex-
ploration problem like LifeSurvey would likely be subject to many other types of
error, including random noise in the region priors, unmodeled correlations in the
presence of life between neighboring cells, and inaccuracies in the sensor noise
model. This experiment only scratches the surface.

We used the POMDP planner to generate five policies, one for each setting of
q. As before, the POMDP planner was run on a 3.2 GHz Pentium-4 processor with
2 GB of main memory. We ran the planner for 103 seconds (about 20 minutes)
to generate each policy. We also generated five distinct policies with the reactive
planner, since the path it selects depends on the region priors. The blind planner
is unaffected by ¢, so its policies were the same across all versions of the planning
model.

As before, each policy was tested on each setting of ¢ for 10° runs in simu-
lation. All simulation runs used the same region map, with a new target layout
drawn randomly for each run. The system model used by the simulator was held
constant as the planning model varied. Reported performance measurements are
mean values over all runs. As before, the errors in the estimated means were small
enough (< 0.1) that we do not report individual confidence intervals.

Figure 8.13 presents performance variations as a function of the prior mul-
tiplier. The performance measures “Search actions”, “Regions confirmed”, and
“Reward” are defined as in Table 8.1.

The blind policy does not depend on ¢, and the simulator model did not vary
in this experiment, so the blind planner performance is constant across all values
of ¢. One can verify that the values are equal to those in the earlier simulation
experiment with ¢ = 1.

234



8.5. Experimental Evaluation

Search actions vs. prior multiplier

25 | T T
20 e mmmmm - oo =
15 -
o 0 O R = g ¢
L PP ]

poom T 1 1 1
0 0.5 1 1.5 2

Regions confirmed vs. prior multiplier

3

e e N - -1
N - s A
27 ¢ Tk © _LJ
1.5 - -
1 — —
05 —

0 | | |
0 0.5 1 1.5 2

Reward vs. prior multiplier
100

% R T L
801 )
70 . —
60 £ . ~ -
50 - © 4
40 —
1) o - e =

20 | | |
0 0.5 1 1.5 2

Blind —6— Reactive ——+- POMDP --{3---

Figure 8.13: LifeSurvey simulation testing: planner performance vs. prior multi-
plier (holding simulation model constant).

Under the reactive planner, the prior multiplier ¢ affects only the initial selec-

tion of the reference path,

heuristic (8.6). When g =

by changing the p, values used in the path evaluation
0, all paths have the same heuristic value, and the reac-

tive planner breaks the tie by arbitrarily selecting a path that follows the northern
border of the map, where part of the sensor footprint of the scan action is off the
edge of the map. This means the rover effectively scans fewer cells, reducing the
number of search actions and hurting overall performance slightly. For other values
of g, the path is routed through high-value regions and is fairly consistent, varying

235



8. Science Autonomy

slightly only because the heuristic is not linear in the p, values.

The policy of the POMDP planner varies most as ¢ changes. With ¢ = 0,
the planner believes that there is no life in the map and dashes straight to the exit
with non-sampling moves. It never performs search actions and never confirms the
presence of life in any region, but still gets small rewards for visiting regions and
moving through cells containing life.

With ¢ = 2, high-value regions that normally have p = 0.5 now have p = 1 in
the planner model. Thus the planner believes that it can blindly sample any cell in
such a region and be assured of confirming the presence of life. Low-value regions
that normally have p = 0.1 now have p = 0.2 in the planner model. The POMDP
policy aggressively scans these regions, and falls short of its predicted performance
because the scans come up negative more frequently than they should according to
the planning model.

For the intermediate values ¢ = 0.5,1,1.5, the POMDP policy varies, but
luckily the policies for all three values make liberal use of scanning actions in high-
value regions, so the robot receives sensor information that to some extent corrects
the corrupted priors. The POMDP planner performance is (unsurprisingly) highest
with uncorrupted priors at ¢ = 1, but nearly the same performance is achieved at
q=0.5and ¢ = 1.5.

These results show that the POMDP planner is fairly robust to one type of
systematic model error in a broad range (¢ = 0.5 or 1.5), although performance
eventually degrades as the error becomes too large (¢ = 0 or 2). The POMDP plan-
ner again significantly outperformed the blind and reactive planners at all values
except ¢ = 0.

8.6 Conclusions

In the future, highly capable Mars rovers will drive longer distances and will face
the communications bottlenecks inherent in over-the-horizon science. As we have
shown, autonomous science can help to overcome these difficulties by adaptively
planning exploration decisions that best match scientists’ goals. Our specific tech-
nical contributions included:

1. The first demonstration of a science rover autonomously responding to the
detection of life in the field (§8.3).

2. The first demonstration of autonomous mapping that takes both prior maps
and rover science observations into account, and the first demonstration of
a rover executing a plan built by automated reasoning about potential future
science opportunities (§8.4).

236



8.6. Conclusions

The automatic life detection experiment provided us with valuable experience
integrating science autonomy technology with onboard software systems and with
the command cycle of remote science operations. The efficient mapping exper-
iment showed that POMDP planning can be useful in science autonomy applica-
tions. Together, these experiments address different challenges that will be relevant
to future field deployment of POMDP planning for science autonomy.

In the context of this thesis, the LifeSurvey domain was a capstone challenge
in POMDP planning. On the one hand, LifeSurvey was motivated by the demands
of real future applications, and on the other it was a POMDP problem with inter-
esting structure that was intractable using existing state-of-the-art solution algo-
rithms. In order to generate an approximately optimal policy we used nearly all
of the techniques developed in the course of this thesis work, from value function
representation to heuristic search to state abstraction.

237



8. Science Autonomy

238



Chapter 9

Conclusions

The thesis of this work is that probabilistic planning that reasons about information-
gathering actions can significantly improve the efficiency of robotic exploration.
To support that claim, we developed techniques to speed up probabilistic plan-
ning, used these techniques to generate exploration policies, and showed that the
resulting policies outperformed manually generated policies both in simulation and
onboard a robot.

We developed the unifying framework of focused value iteration for under-
standing a class of planning algorithms for MDPs and POMDPs. Focused value it-
eration cleanly separates the key issues of value function representation and heuris-
tic search for selecting points to update. Because techniques in these two areas
are analyzed independently, we can adapt search strategies from fully observable
MDPs to POMDPs and develop theoretical results that depend only on the value
function representation, so that they apply across multiple search strategies.

We presented a number of efficiency improvements for POMDP value function
representations, including o vector masking, passive pruning, and hybrid tabular
representations. We identified a trade-off one must make in designing an updatable
representation—it can provide either strong update generalization or fast updates,
but not both. For the problems we studied, performance was best when we com-
promised these two objectives.

With respect to the commonly used max-planes representation for POMDP
value functions, we developed two new bounds on the number of « vectors required
to represent the optimal value function V* within e. For the first bound, we focused
on approximating V* well in the neighborhood of beliefs that are quickly reachable
from the initial belief by, requiring fewer « vectors in other parts of the belief
simplex but still guaranteeing that policies based on the approximation have small
regret. For the second bound, we found a way to smooth out the non-linearities of

239



9. Conclusions

V* so that each « vector could effectively cover more volume. Roughly speaking,
this approach reduced the number of « vectors needed from 7 to y/n.

We developed two heuristic search algorithms, Heuristic Search Value Itera-
tion (HSVI) and Focused Real-Time Dynamic Programming (FRTDP). Both al-
gorithms use lower and upper bounds on V* to direct forward exploration during
search. The guiding principle of HSVI is to choose the successor state that con-
tributes most to the uncertainty in the value of the initial state sg; this uncertainty is
related to the regret of the output policy. FRTDP is based on the same idea, but its
choices are less myopic. Compared to related previous algorithms, both HSVI and
FRTDP showed significant performance improvements on benchmark problems.

In order to handle large factored POMDPs, we developed a state space com-
pression algorithm called conditionally irrelevant variable abstraction (CIVA). CIVA
temporarily abstracts away state variables in contexts where they are provably ir-
relevant. With appropriate problem structure, CIVA can exponentially reduce the
size of the unfactored state space. In one instance, we used CIVA to reduce the
unfactored state space from more than 10?4 states to less than 10%, putting it within
reach of our focused value iteration solution algorithms.

We ran two main experiments in robotic exploration. The first experiment, con-
ducted in the Atacama Desert of Chile, demonstrated that enabling a science rover
to autonomously react to signs of life can significantly improve its exploration ef-
ficiency. The second experiment, conducted in a controlled outdoor environment,
showed that by using advanced POMDP planning techniques we can tractably gen-
erate exploration policies that outperform simple manually generated policies.

9.1 Software Contributions

Most of the algorithms and POMDP and MDP models used in this work are freely
available as part of the ZMDP software package, which can be downloaded from
my web page at http://www.cs.cmu.edu/ trey/zmdp/.

ZMDP is written in C++ and runs on the Linux and Mac OS X platforms.
It reads POMDP and MDP models specified in Tony Cassandra’s model format,
providing a number of options for solving problems and plotting anytime algo-
rithm performance. It has been used to teach about POMDP solution algorithms in
one class (CMU 16-830: Planning, Execution, and Learning), and has been down-
loaded more than 200 times. Please do not hesitate to try it out, and contact me if
you have any problems.

240



9.2. Future Work

Algorithm 9.1 Continuous focused value iteration (variant of Algorithm 3.3).

1: function continuousFocused Valuelteration(d) :
2:  [executes a policy 7 such that regret(m) < ¢]
3 T «+ <SEARCH>.initialSearchState(sq)
4: VI — <LB>.initialValueFunction()
5. VY «— <UB>.initialValueFunction()
6 loop:

7 if (VU(sg) —VI(sp)) <6z

8 apply action chooseAction(V'1, s9)

9: so < {updated state based on action and observed outcome }
10: T + <SEARCH>.initialSearchState(sq)

11: s,z « <SEARCH>.chooseUpdatePoint(VZ, V'V )
12: VI — <LB>.focusedUpdate(V", s)

13: VU — <UB>.focusedUpdate(VU,s)

14:

15: function chooseAction(Vx, s) :
16:  return argmax, [R(s,a) +v Y, T(s,a,s)VE(s)]

9.2 Future Work

There are many opportunities to extend the work presented in this thesis document.

9.2.1 Continuous Planning

In many real-world planning domains, human planners deal with complexity by
forming an incomplete or sub-optimal initial policy and elaborating it during exe-
cution as new information becomes available. In the automated planning commu-
nity, this is sometimes called continuous planning (Myers, 1999) or interleaving
planning and execution (Nourbakhsh, 1997).

It is particularly easy to adapt focused value iteration to a continuous planning
context. With the heuristics we developed, focused value iteration tends to focus
planning effort on likely outcomes, so if the planner is stopped early it generates
policies that perform well in the nominal case but poorly when there are surprises
at execution time. This problem can be partially remedied by allowing the agent
to stop and perform further planning when an off-nominal outcome occurs. Fur-
thermore, if the agent is in state s and must decide whether to act immediately or
plan further, it can base its decision on the focused value iteration regret bound
VU(s) = VI(s).

241



9. Conclusions

Continuous focused value iteration, Algorithm 9.1, is just one proposed adap-
tation for continuous planning. In this approach, a single set of value function
bounds is maintained throughout execution. At each opportunity to take an action,
the algorithm updates the “initial state” of the planner to be the current execution
state and performs focused updates until the regret of its output policy (starting
from the current state) is bounded to less than §. Since the algorithm starts exe-
cuting a policy whose regret is less than § and incrementally improves the policy
during execution, it is likely to actually achieve significantly smaller regret through
improved responses to off-nominal outcomes. Of course, many other approaches
are possible depending on the relative importance of policy quality and planning
time constraints.

9.2.2 Better Understanding of MDP Heuristic Search

In deterministic planning problems there is a well-developed theory of optimal
heuristic search. For example, under appropriate conditions, the A* algorithm is
known to be optimal in the sense that any algorithm that is guaranteed to generate
an optimal policy must examine all the states that A* examines (Hart et al., 1968;
Pearl, 1984).

MDP heuristic search is complicated both by uncertain action outcomes and
by the fact that we are often interested in generating a policy that is approximately
rather than exactly optimal (Hansen and Zilberstein, 2001; Bonet and Geffner,
2003a; McMahan et al., 2005). Under these constraints, we probably cannot obtain
any heuristic search optimality result as strong as that of A* for deterministic prob-
lems. Indeed, little is known about how far MDP heuristic search can be improved.

One triumph of the A* theoretical analysis was the clean separation between
the generic A* search algorithm and the problem-specific heuristic information. In
contrast, our sense is that state-of-the-art generic MDP search algorithms still hard-
code decisions that would more properly be based on problem-specific information.
In order to move intelligence from the algorithm to the heuristic, we will likely
need richer ways to specify “admissible” heuristics, going beyond (for example)
simple upper or lower bound values on states. This is a potentially rich area for
future work.

9.2.3 Integrating POMDP Planning With Rover Operations

We have demonstrated that our POMDP planning techniques can generate good
policies for simple exploration problems, but a number of issues need to be ad-
dressed before our technology can be applied to a full-up rover mission. Here are
a few:

242



9.3. Summary

e Planetary rovers typically face complex operational constraints (Tompkins
et al., 2004; Bresina et al., 2005). For example, science instruments may
require long warm-up periods before use, or the rover may need to end its
daily operations on a south-facing slope. There are a number of approaches
for enforcing such constraints while using a POMDP planner. It may be fea-
sible to compile simple constraints into the planning model itself, although
more complex constraints are likely to make planning intractable.

A potentially more promising approach is to rely on different types of plan-
ning at different levels of abstraction. The overall plan for a command cy-
cle could consist of multiple segments, with some segments using POMDP
planning and some segments using other approaches. At finer levels of de-
tail, actions selected by the POMDP planner could be macros that invoke a
lower-level planner.

e There are a number of usability issues that have not been addressed by the
POMDP community. For example, in real applications, it is often easier to
elicit user preferences with a mixed-initiative system that allows users to in-
teract with the planner (Bresina et al., 2005). To our knowledge, so far there
has been no research on human-computer interaction to control POMDP
planning.!

e In order to generate good policies, we need good probabilistic models. Un-
fortunately, even in well-understood domains, domain experts often do a
poor job of estimating the probabilities of events. This problem is only com-
pounded for planetary rovers exploring novel environments that are poorly
understood. Better techniques are needed for model learning and robust
planning in the presence of model errors (Singh et al., 2003; Jaulmes et al.,
2005).

9.3 Summary

We have presented several techniques for improving the scalability of MDP and
POMDP planning, in areas ranging from value function representation to heuristic
search to state abstraction. We used these techniques to solve extremely chal-
lenging POMDPs related to robotic exploration, generating approximately optimal
policies with strong regret bounds. While much research remains to be done, our

"Here we are drawing a distinction between human-computer interaction to control a POMDP
planner and use of a POMDP planner to manage human interaction, which has been studied for
example in dialog management and preference elicitation systems (Roy et al., 2000; Boutilier, 2002).

243



9. Conclusions

experiments with a rover in the Atacama Desert of Chile and in controlled out-
door environments provide early validation both for the overall concept of science
autonomy and for POMDP exploration planning in particular.

244



Bibliography

Aberdeen, D. (2003). Policy-Gradient Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, Australia National University.

Abrams, M. (2000). ASTER: Data products for the high spatial resolution imager
on NASA’s EOS-AMI1 platform. Int. J. of Remote Sensing, 21(5):847-859.

Andre, D. and Russell, S. (2002). State abstraction for programmable reinforce-
ment learning agents. In Proc. Nat. Conf. on Artificial Intelligence (AAAI), pages
119-125.

Astrom, K. J. (1965). Optimal control of Markov decision processes with incom-
plete state estimation. J. Math. Analysis and Applications, 10:174-205.

Baird, L. C. and Moore, A. W. (1999). Gradient descent for general reinforcement
learning. In Proc. Advances in Neural Information Processing Systems (NIPS).

Barto, A., Bradtke, S., and Singh, S. (1995). Learning to act using real-time dy-
namic programming. Artificial Intelligence, 72(1-2):81-138.

Baum, J. and Nicholson, A. E. (1998). Dynamic non-uniform abstractions for
approximate planning in large structured domains. In Proc. Pacific Rim Int.
Conf. on Artificial Intelligence.

Baxter, J. and Bartlett, P. L. (2000). Reinforcement learning on POMDPs via direct
gradient ascent. In Proc. Int. Conf. on Machine Learning (ICML).

Bellman, R. (1957). Dynamic Programming. Princeton University Press, NJ.
Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The com-
plexity of decentralized control of Markov decision processes. Math. of Opera-

tions Research, 27(4):819-840.

245



BIBLIOGRAPHY

Bernstein, D. S., Hansen, E. A., and Zilberstein, S. (2005). Bounded policy iter-
ation for decentralized POMDPs. In Proc. Int. Joint Conf. on Artificial Intelli-
gence.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Bonet, B. and Geffner, H. (2003a). Faster heuristic search algorithms for plan-
ning with uncertainty and full feedback. In Proc. Int. Joint Conf. on Artificial
Intelligence (IJCAI).

Bonet, B. and Geftner, H. (2003b). Labeled RTDP: Improving the convergence of
real time dynamic programming. In Proc. Int. Conf. on Applied Planning and
Scheduling (ICAPS).

Bornstein, B. and Castafio, R. (2005). Creation and testing of an artificial neural
network based carbonate detector for Mars rovers. In Proc. IEEE Aerospace
Conf.

Boutilier, C. (2002). A POMDP formulation of preference elicitation problems. In
Proc. Nat. Conf. on Artificial Intelligence (AAAI), pages 239-246, Edmonton.

Boutilier, C. and Dearden, R. (1994). Using abstractions for decision-theoretic
planning with time constraints. In Proc. Nat. Conf. on Artificial Intelligence
(AAAI).

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic pro-
gramming with factored representations. Artificial Intelligence, 121:49-107.

Boutilier, C. and Poole, D. (1996). Computing optimal policies for partially ob-
servable decision processes using compact representations. In Proc. Nat. Conf.
on Artificial Intelligence, pages 1168-1175.

Brafman, R. L. (1997). A heuristic variable grid solution method for POMDPs. In
Proc. Nat. Conf. on Artificial Intelligence (AAAI).

Brafman, R. I. and Shani, G. (2004). Resolving perceptual aliasing in the presence
of noisy senors. In Proc. Advances in Neural Information Processing Systems
(NIPS).

Bresina, J. L., Jonsson, A. K., Morris, P. H., and Rajan, K. (2005). Mixed-initiative
planning in MAPGEN: Capabilities and shortcomings. In Proc. Int. Conf. on
Planning and Scheduling (ICAPS) Workshop on Mixed-Initiative Planning and
Scheduling.

246



BIBLIOGRAPHY

Cabrol, N. A., Wettergreen, D. S., Warren-Rhodes, K., Grin, E. A., Moersch, J. E.,
Chong Diaz, G., Cockell, C. S., Coppin, P., Demergasso, C., Dohm, J. M., Ernst,
L. A., Fisher, G., Hardgrove, C., Hock, A. N., Marinangeli, L., Minkley, E. G.,
Ori, G. G, Piatek, J. L., Waggoner, A. S., Weinstein, S. J., Wyatt, M., Smith, T.,
Thompson, D. R., Wagner, M. D., Jonak, D., Stubbs, K., Thomas, G., Pudenz,
E., and Glasgow, J. (2007). Life in the Atacama: Searching for life with rovers
(science overview). J. Geophys. Res. Biogeosciences. (In press).

Casper, J. and Murphy, R. R. (2003). Human-robot interactions during the robot-
assisted urban search and rescue response at the World Trade Center. [EEE
Transactions on Systems, Man and Cybernetics Part B, 33(3):367-385.

Cassandra, A. R. (1998a). Exact and Approximate Algorithms for Partially Observ-
able Markov Decision Processes. PhD thesis, Brown Univ., Dept. of Computer
Science.

Cassandra, A. R. (1998b). A survey of POMDP applications. In Proc. Amer. Ass.
for Artificial Intelligence (AAAI) Fall Symp.: Planning with Partially Observ-
able Markov Processes.

Cassandra, A. R., Kaelbling, L. P., and Kurien, J. A. (1996). Acting under uncer-
tainty: Discrete bayesian models for mobile-robot navigation. In Proc. IEEE Int.
Conf. on Intelligent Robots and Systems (IROS).

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in
partially observable stochastic domains. In Proc. Nat. Conf. on Artificial Intelli-
gence (AAAI), volume 2, pages 1023-1028, Seattle, WA.

Cassandra, A. R., Littman, M. L., and Zhang, N. L. (1997). Incremental pruning:
A simple, fast, exact method for partially observable Markov decision processes.
In Proc. Int. Conf. on Uncertainty in Artificial Intelligence (UAI).

Castano, A., Anderson, R. C., Castano, R., Estlin, T., and Judd, M. (2004).
Intensity-based rock detection for acquiring onboard rover science. In Proc.
Lunar and Planetary Science Conf. (LPSC).

Castafio, R., Anderson, R. C., Estlin, T., DeCoste, D., Fisher, F., Gaines, D., Maz-
zoni, D., and Judd, M. (2003a). Rover traverse science for increased mission
science return. In Proc. IEEE Aerospace, Big Sky, Montana.

Castafio, R., Anderson, R. C., Estlin, T., DeCoste, D., Fisher, F., Gaines, D., Maz-
zoni, D., and Judd, M. (2003b). Rover traverse science for increased mission
science return. In Proc. IEEE Aerospace Conf.

247



BIBLIOGRAPHY

Charlin, L., Poupart, P., and Shioda, R. (2006). Automated hierarchy discovery
for planning in partially observable environments. In Proc. Advances in Neural
Information Processing Systems (NIPS).

Cheng, H.-T. (1988). Algorithms for partially observable Markov decision pro-
cesses. PhD thesis, University of British Columbia, Vancouver, BC, Canada.

Chien, S., Sherwood, R., Tran, D., Castafio, R., Cichy, B., Davies, A., Rabideau,
G., Tang, N., Burl, M., Mandl, D., Frye, S., Hingemihle, J., D’ Augustino, J.,
Bote, R., Trout, B., Schulman, S., Ungar, S., Gaasback, J. V., Boyer, D., Griffin,
M., Burke, H.-H., Greeley, R., Doggett, T., Williams, K., Baker, V., and Dohm,
J. M. (2003). Autonomous science on the EO-1 mission. In Proc. Int. Symp.
on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS), Nara,
Japan.

Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castafio, R., Davies,
A., Mandl, D., Frye, S., Trout, B., Shulman, S., and Boyer, D. (2005). Using
autonomy flight software to improve science return on Earth Observing One. J.
Aerospace Computing, Communication and Information, 2:196.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The percep-
tual distinctions approach. In Proc. Nat. Conf. on Artificial Intelligence (AAAI).

Conway, J. H. and Sloane, N. J. A. (1999). Sphere Packings, Lattices, and Groups.
Springer, third edition.

Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D. E., and Washington, R.
(2003). Incremental contingency planning. In Proc. Int. Conf. on Applied Plan-
ning and Scheduling (ICAPS) Workshop on Planning under Uncertainty.

Dial, G., Bowen, H., Gerlach, F., Grodecki, J., and Oleszczuk, R. (2003). IKONOS
satellite, imagery, and products. Remote Sensing of Environment, 88(1):23-36.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ
value function decomposition. J. Artificial Intelligence Res., 13:227-303.

Dongarra, J. J., Croz, J. D., Hammarling, S., and Hanson, R. J. (1988). An extended
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft.,
14:1-17.

Drake, A. W. (1962). Observations of a Markov process through a noisy channel.
PhD thesis, Massachusetts Inst. of Tech.

248



BIBLIOGRAPHY

Draper, D., Hanks, S., and Weld, D. (1994). Probabilistic planning with informa-
tion gathering and contingent execution. In Proc. Int. Conf. on Artificial Intelli-
gence Planning Systems, pages 31-36.

Dunlop, H. (2006). Automatic rock detection and classification in natural scenes.
Technical Report CMU-RI-TR-06-40, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

Estlin, T., Castaio, R., Anderson, R. C., Gaines, D., Fisher, F., and Judd, M. (2003).
Learning and planning for mars rover science. In Proc. Int. Joint Conf. on Arti-
ficial Intelligence (IJCAI) Workshop on Issues in Designing Physical Agents for
Dynamic Real-Time Environments: World Modeling, Planning, Learning, and
Communicating, Acapulco, Mexico.

Estlin, T., Fisher, F., Gaines, D., Chouinard, C., Schaffer, S., and Nesnas, 1. (2002).
Continuous planning and execution for an autonomous rover. In Proc. Int. NASA
Workshop on Planning and Scheduling for Space, Houston, TX.

Feng, Z. and Hansen, E. A. (2001). Approximate planning for factored POMDPs.
In European Conf. on Planning.

Feng, Z. and Hansen, E. A. (2004). An approach to state aggregation for POMDPs.
In Proc. Nat. Conf. on Artificial Intelligence (AAAI) Workshop on Learning and
Planing in Markov Processes, San Jose, CA.

Ferguson, D., Stentz, A., and Thrun, S. (2004). PAO* for planning with hidden
state. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA).

Fine, S., Singer, Y., and Tishby, N. (1998). The hierarchical hidden Markov model:
Analysis and applications. Machine Learning, 32:189-208.

Fox, J., Castafio, R., and Anderson, R. C. (2002). Onboard autonomous rock shape
analysis for Mars rovers. In Proc. IEEE Aerospace Conf.

Geftner, H. and Bonet, B. (1998). Solving large POMDPs by real time dynamic
programming. In Proc. Amer. Ass. for Artificial Intelligency (AAAI) Fall Sympo-
sium on POMDPs.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model mini-
mization in Markov decision processes. Artificial Intelligence, 147:163-223.

Gor, V., Castafio, R., Manduchi, R., Anderson, R. C., and Mjolsness, E. (2000).
Autonomous rock detection for Mars terrain. In Proc. Amer. Inst. of Aeronautics
and Astronautics (AIAA) Space Conf.

249



BIBLIOGRAPHY

Granas, A. and Dugundji, J. (2003). Fixed Point Theory. Springer-Verlag, New
York.

Gruber, P. (1993). Asymptotic estimates for smooth and stepwise approximations
of convex bodies 1. Forum Mathematicum, 5:281-297.

Guestrin, C., Koller, D., and Parr, R. (2001). Multiagent planning with factored
MDPs. In Proc. Advances in Neural Information Processing Systems (NIPS).

Gulick, V. C., Morris, R. L., Ruzon, M. A., and Roush, T. L. (2001). Autonomous
image analyses during the 1999 Marsokhod rover field test. J. Geophys. Res.,
106(E4):7745.

Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In Proc.
Int. Conf. on Uncertainty in Artificial Intelligence (UAI), Madison, Wisconsin.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic program-
ming for partially observable stochastic games. In Proc. Nat. Conf. on Artificial
Intelligence (AAAI), San Jose, CA.

Hansen, E. A. and Feng, Z. (2000). Dynamic programming for POMDPs using
a factored state representation. In Proc. Int. Conf. on Applied Planning and
Scheduling (ICAPS).

Hansen, E. A. and Zhou, R. (2003). Synthesis of hierarchical finite-state con-
trollers for POMDPs. In Proc. Int. Conf. on Automated Planning and Scheduling
(ICAPS), Trento, Italy.

Hansen, E. A. and Zilberstein, S. (2001). LAO*: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129:35-62.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths in graphs. IEEE Trans. on Systems Science
and Cybernetics, SSC-4(2):100-107.

Hauskrecht, M. (1997). Incremental methods for computing bounds in partially
observable Markov decision processes. In Proc. Nat. Conf. on Artificial Intelli-
gence (AAAI), pages 734-739, Providence, RI.

Hauskrecht, M. (2000). Value-function approximations for partially observable
Markov decision processes. J. Artificial Intelligence Res., 13:33-94.,

Hauskrecht, M. and Fraser, H. (2000). Planning treatment of ischemic heart disease
with partially observable Markov decision processes. Artificial Intelligence in
Medicine, 18:221-244.

250



BIBLIOGRAPHY

Hoey, J., von Bertoldi, A., Poupart, P., and Mihailidis, A. (2007). Assisting persons
with dementia during handwashing using a partially observable Markov decision
process. In Proc. Int. Conf. on Vision Systems (ICVS).

Hsiao, K., Kaelbling, L. P., and Lozano-Perez, T. (2007). Grasping POMDPs. In
Proc. Int. Conf. on Robotics and Automation (ICRA).

Izadi, M. and Precup, D. (2006). Exploration in POMDP belief space and its
impact on value function approximation. In Proc. European Conf. on Artificial
Intelligence (ECAI).

Jaulmes, R., Pineau, J., and Precup, D. (2005). Active learning in partially observ-
able Markov decision processes. In Proc. European Conf. on Machine Learning.

Kaelbling, L. P. (1993). Learning in Embedded Systems. The MIT Press.

Kaelbling, L. P, Littman, M. L., and Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101:99—-134.

Kakade, S. (2001). A natural policy gradient. In Proc. Advances in Neural Infor-
mation Processing Systems (NIPS).

Kearns, M., Mansour, Y., and Ng, A. Y. (2000). Approximate planning in large
POMDPs via reusable trajectories. In Proc. Advances in Neural Information
Processing Systems (NIPS).

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42(189-211).

Leonard, N., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D. M., and Davis, R.
(2007). Collective motion, sensor networks, and ocean sampling. Proc. IEEE,
95(1):48-74.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. PhD thesis,
Brown University.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning policies for
partially observable environments: scaling up. In Proc. Int. Conf. on Machine
Learning (ICML).

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1996). Efficient dynamic-
programming updates in partially observable Markov decision processes. Tech-
nical Report CS-95-19, Brown Univ., Providence, RI.

251



BIBLIOGRAPHY

Littman, M. L., Sutton, R. S., and Singh, S. (2002). Predictive representations
of state. In Proc. Advances in Neural Information Processing Systems (NIPS),
volume 14, pages 1555-1561.

Loch, J. and Singh, S. (1998). Using eligibility traces to find the best memoryless
policy in partially observable Markov decision processes. In Proc. Int. Conf. on
Machine Learning (ICML), pages 323-331.

Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed
Markov decisions processes. Operations Research, 39(1):162-175.

Maimone, M. W., Biesadecki, J., Tunstel, E., Cheng, Y., and Leger, P. C. (2006).
Surface navigation and mobility intelligence on the Mars Exploration Rovers. In
Intelligence for Space Robotics, pages 45-69. TSI Press, San Antonio, TX.

McAllester, D. and Singh, S. (1999). Approximate planning for factored POMDPs
using belief state simplification. In Proc. Int. Conf. on Uncertainty in Artificial
Intelligence (UAI).

McCallum, A. R. (1995a). Instance-based utile distinctions for reinforcement
learning. In Proc. Int. Conf. on Machine Learning (ICML).

McCallum, A. R. (1995b). Reinforcement learning with selective perception and
hidden state. PhD thesis, Univ. of Rochester.

McMahan, H. B., Likhachev, M., and Gordon, G. J. (2005). Bounded real-time
dynamic programming: RTDP with monotone upper bounds and performance
guarantees. In Proc. Int. Conf. on Machine Learning (ICML).

Meuleau, N., Kim, K.-E., and Kaelbling, L. P. (1999). Solving POMDPs by search-
ing the space of finite policies. In Proc. Int. Conf. on Uncertainty in Artificial
Intelligence (UAI).

Monahan, G. E. (1982). A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms. Management Science, 28:1-16.

Moorehead, S. (2001). Autonomous Surface Exploration for Mobile Robots. PhD
thesis, Robotics Institute, Carnegie Mellon University. CMU-RI-TR-01-30.

Munos, R. (2004). Error bounds for approximate value iteration. Technical Report
CMAP 527, Ecole Polytechnique.

Myers, K. L. (1999). CPEF: A continuous planning and execution framework. Al
Magazine, 20(4):63—-69.

252



BIBLIOGRAPHY

Ng, A. Y. and Jordan, M. (2000). PEGASUS: A policy search method for large
MDPs and POMDPs. In Proc. Int. Conf. on Uncertainty in Artificial Intelligence
(UAI).

Nourbakhsh, 1. (1997). Interleaving Planning and Execution for Autonomous
Robots. Kluwer Academic Publishers.

Nourbakhsh, I., Powers, R., and Birchfield, S. (1995). DERVISH: An office-
navigating robot. Al Magazine, 16(2):53—-60.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov deci-
sion processes. Math. of Operations Research, 12(3):441-450.

Parr, R. and Russell, S. (1995). Approximating optimal policies for partially ob-
sevable stochastic domains. In Proc. Int. Joint Conf. on Artificial Intelligence
(1JCAI).

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Pearlman, J., Carman, S., Segal, C., Jarecke, P., Clancy, P., and Browne, W. (2001).
Overview of the Hyperion Imaging Spectrometer for the NASA EO-1mission.
Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS), 1.

Pedersen, L. (2000). Robotic Rock Classification and Autonomous Exploration.
PhD thesis, Robotics Institute, Carnegie Mellon University. CMU-RI-TR-01-
14.

Pedersen, L. (2001). Autonomous characterization of unknown environments. In
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages 277-284.

Pedersen, L. (2002). Science target assessment for Mars rover instrument deploy-
ment. In Proc. IEEE Int. Conf. on Intelligent Robotics and Systems (IROS),
pages 817-822.

Pedersen, L., Clancey, W. J., Sierhuis, M., Muscettola, N., Smith, D. E., Lees, D.,
Rajan, K., Ramakrishnan, S., Tompkins, P., Vera, A., and Dayton, T. (2006).
Field demonstration of surface human-robotic exploration activity. In Proc.
Amer. Ass. for Artificial Intelligence (AAAI) Spring Symp.: To Boldly Go Where
No Human-Robot Team Has Gone Before.

Pedersen, L., Wagner, M. D., Apostolopoulos, D., and Whittaker, W. L. (2001).
Autonomous robotic meteorite identification in Antarctica. In Proc. Int. Conf.
on Robotics and Automation (ICRA), pages 4158-4165.

253



BIBLIOGRAPHY

Pineau, J. (2004). Tractable Planning Under Uncertainty: Exploiting Structure.
PhD thesis, Robotics Institute, Carnegie Mellon University.

Pineau, J. and Gordon, G. J. (2005). POMDP planning for robust robot control. In
Proc. Int. Symp. on Robotics Res. (ISRR).

Pineau, J., Gordon, G. J., and Thrun, S. (2003a). Applying metric-trees to belief-
point POMDPs. In Proc. Advances in Neural Information Processing Systems
(NIPS).

Pineau, J., Gordon, G. J., and Thrun, S. (2003b). Point-based value iteration: An
anytime algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelli-
gence (IJCAI), Acapulco, Mexico.

Pineau, J., Gordon, G. J., and Thrun, S. (2003c). Policy-contingent abstraction for
robust robot control. In Proc. Int. Conf. on Uncertainty in Artificial Intelligence
(UAI).

Pineau, J., Gordon, G. J., and Thrun, S. (2006). Anytime point-based approxima-
tions for large POMDPs. J. Artificial Intelligence Res., 27(335-380).

Porta, J. M., Vlassis, N., Spaan, M. T. J., and Poupart, P. (2006). Point-based value
iteration for continuous POMDPs. J. Machine Learning Res., 7:2329-2367.

Poupart, P. and Boutilier, C. (2003a). Bounded finite state controllers. In Proc.
Advances in Neural Information Processing Systems (NIPS).

Poupart, P. and Boutilier, C. (2003b). Value-directed compression of POMDPs. In
Proc. Advances in Neural Information Processing Systems (NIPS).

Poupart, P. and Boutilier, C. (2004). VDCBPI: an approximate scalable algorithm
for large scale POMDPs. In Proc. Advances in Neural Information Processing
Systems (NIPS), Vancouver.

Rote, G. (1992). The convergence rate of the Sandwich algorithm for approximat-
ing convex functions. Computing, 48:337-361.

Roth, M., Simmons, R., and Veloso, M. (2006). What to communicate? execution-
time decision in multi-agent POMDPs. In Proc. Int. Symp. on Distributed Au-
tonomous Robotic Systems (DARS).

Roy, N. and Gordon, G. J. (2003). Exponential family PCA for belief compres-
sion in POMDPs. In Proc. Advances in Neural Information Processing Systems
(NIPS).

254



BIBLIOGRAPHY

Roy, N., Gordon, G. J., and Thrun, S. (2003). Planning under uncertainty for
reliable health care robotics. In Proc. Int. Conf. on Field and Service Robotics
(FSR).

Roy, N., Gordon, G. J., and Thrun, S. (2005). Finding approximate POMDP solu-
tions through belief compression. J. Artificial Intelligence Res., 23:1-40.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dialog management for robots.
In Proc. Ass. for Computational Linguistics, Hong Kong.

Roy, N. and Thrun, S. (1999). Coastal navigation with mobile robots. In Proc.
Advances in Neural Information Processing Systems (NIPS).

Shani, G., Brafman, R. L., and Shimony, S. E. (2005). Model-based online learning
of POMDPs. In Proc. European Conf. on Machine Learning (ECML).

Shani, G., Brafman, R. 1., and Shimony, S. E. (2006). Prioritizing point-based
POMDP solvers. In Proc. European Conf. on Machine Learning (ECML).

Shani, G., Brafman, R. 1., and Shimony, S. E. (2007). Forward search value itera-
tion for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI).

Simmons, R. and Koenig, S. (1995). Probabilistic robot navigation in partially
observable environments. In Proc. Int. Joint Conf. on Artificial Intelligence (1J-
CAI), pages 1080-1087.

Singh, S., Littman, M. L., Jong, N. K., Pardoe, D., and Stone, P. (2003). Learn-
ing predictive state representations. In Proc. Int. Conf. on Machine Learning
(ICML).

Smith, D. E. (2004). Choosing objectives in oversubscription planning. In Proc.
Int. Conf. on Automated Planning and Scheduling (ICAPS).

Smith, T. (2006). ZMDP software for POMDP and MDP planning.
http://www.cs.cmu.edu/"trey/zmdp/.

Smith, T., Niekum, S., Thompson, D. R., and Wettergreen, D. S. (2005). Con-
cepts for science autonomy during robotic traverse and survey. In Proc. IEEE
Aerospace Conf.

Smith, T. and Simmons, R. (2004). Heuristic search value iteration for POMDPs.
In Proc. Int. Conf. on Uncertainty in Artificial Intelligence (UAI).

255



BIBLIOGRAPHY

Smith, T. and Simmons, R. (2005). Point-based POMDP algorithms: Improved
analysis and implementation. In Proc. Int. Conf. on Uncertainty in Artificial
Intelligence (UAI).

Smith, T. and Simmons, R. (2006). Focused real-time dynamic programming for
MDPs: Squeezing more out of a heuristic. In Proc. Nat. Conf. on Artificial
Intelligence (AAAI).

Sondik, E. J. (1971). The optimal control of partially observable Markov processes.
PhD thesis, Stanford University.

Sondik, E. J. (1978). The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research, 26:282-304.

Spaan, M. T. J. and Vlassis, N. (2005). Perseus: Randomized point-based value
iteration for POMDPs. J. Artificial Intelligence Res., 24:195-220.

Spaan, M. T. J., Vlassis, N., and Gordon, G. J. (2006). Decentralized planning
under uncertainty for teams of communicating agents. In Proc. Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS).

Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., J. E. Bell, L., Calvin, W., Chris-
tensen, P. R., Clark, B. C., Crisp, J. A., Farrand, W. H., Herkenhoff, K. E.,
Johnson, J. R., Klingelhéfer, G., Knoll, A. H., McLennan, S. M., McSween,
H. Y., Morris, R. V., Rice, J. W., Rieder, R., and Soderblom, L. A. (2004). In
situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.
Science, 306(5702):1709-1714.

St. Aubin, R., Hoey, J., and Boutilier, C. (2000). APRICODD: Approximate policy
construction using decision diagrams. In Proc. Advances in Neural Information
Processing Systems (NIPS), pages 1089-1095.

Stentz, A. (1994). Optimal and efficient path planning for partially-known envi-
ronments. In Proc. Int. Conf. on Robotics and Automation (ICRA).

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pa-
cific J. Math, 5:285-309.

Theocharous, G. (2002). Hierarchical Learning and Planning in Partially observ-
able Markov Decision Processes. PhD thesis, Michigan State University.

Thompson, D. R., Niekum, S., Smith, T., and Wettergreen, D. (2005a). Automatic
detection and classification of geological features of interest. In Proc. IEEE
Aerospace Conf.

256



BIBLIOGRAPHY

Thompson, D. R., Smith, T., and Wettergreen, D. (2005b). Data mining during
rover traverse: From images to geologic signatures. In Proc. Int. Symp. on Arti-
ficial Intelligence, Robotics and Automation in Space (iSAIRAS).

Thompson, D. R., Smith, T., and Wettergreen, D. (2006). Autonomous detection of
novel biologic and geologic features in atacama desert rover imagery. In Proc.
Lunar and Planetary Science Conf. (LPSC).

Thrun, S. (2000). Monte carlo POMDPs. In Proc. Advances in Neural Information
Processing Systems (NIPS), pages 1064—1070. MIT Press.

Tompkins, P., Stentz, A., and Whittaker, W. L. (2004). Field experiments in
mission-level path execution and re-planning. In Proceedings of the 8th Con-
ference on Intelligent Autonomous Systems (IAS-8).

Tompkins, P. D. (2005). Mission-Directed Path Planning for Planetary Rover Ex-
ploration. PhD thesis, Robotics Institute, Carnegie Mellon University.

Urmson, C. P., Simmons, R. G., and Nesnas, 1. (2003). A generic framework for
robotic navigation. In Proc. IEEE Aerospace Conf.

Virin, Y., Shani, G., Shimony, S. E., and Brafman, R. I. (2007). Scaling up: Solv-
ing POMDPs through value based clustering. In Proc. Nat. Conf. on Artificial
Intelligence (AAAI).

Waggoner, A. S., Weinstein, S. J., Pane, D., Ernst, L. A., Warren-Rhodes, K.,
Dohm, J. M., Hock, A. N., Piatek, J. L., Emani, S., Wagner, M. D., Fisher,
G., Minkley, E. G., Dansey, L. E., Smith, T., Grin, E. A., Stubbs, K., Thomas,
G., Cockell, C. S., Marinangeli, L., Ori, G. G., Heys, S., Teza, J. P., Moer-
sch, J. E., Coppin, P.,, Chong Diaz, G., Wettergreen, D. S., Cabrol, N. A., and
Lanni, F. (2007). Application of pulsed-excitation fluorescence imager for day-
light detection of sparse life in tests in the Atacama Desert. J. Geophys. Res.
Biogeosciences. (In press).

Wagner, M. D., Apostolopoulos, D., Shillcutt, K., Shamah, B., Simmons, R., and
Whittaker, W. L. (2001). The science autonomy system of the Nomad robot. In
Proc. Int. Conf. on Robotics and Automation (ICRA), pages 1742-1749.

Wang, T., Poupart, P., Bowling, M., and Schuurmans, D. (2006). Compact, convex
upper bound iteration for approximate POMDP planning. In Proc. Nat. Conf. on
Artificial Intelligence (AAAI), Boston, MA.

Weisstein, E. (1999). Hypersphere. Mathworld—A Wolfram Web Resource.

257



BIBLIOGRAPHY

Wettergreen, D. S., Cabrol, N. A., Baskaran, V., Calderén, F., Heys, S., Jonak,
D., Liiders, R. A., Pane, D., Smith, T., Teza, J. P, Tompkins, P. D., Villa, D.,
Williams, C., and Wagner, M. D. (2005). Second experiments in the robotic
investigation of life in the Atacama Desert of Chile. In Proc. Int. Symp. on
Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS).

White, C. C. (1991). Partially observed Markov decision processes: A survey.
Annals of Operations Research, 32.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3-4):229-256.

Williams, R. J. and Baird, L. C. (1993). Tight performance bounds on policies
based on imperfect value functions. Technical report, Northeastern University,
College of Computer Science, Boston, MA.

Zhang, N. L. and Zhang, W. (2001). Speeding up the convergence of value iteration
in partially observable Markov decision processes. J. Artificial Intelligence Res.,
14:29-51.

Zhou, R. and Hansen, E. A. (2001). An improved grid-based approximation algo-
rithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI).

258



Author Index

Aberdeen, D. 20

Abrams, M. 215

Anderson, R. C. 19, 26, 209, 211-213
Andre, D. 56

Apostolopoulos, D. 19, 211
Arvidson, R. E. 19

Astrom, K. J. 52

Baird, L. C. 36, 58, 135, 139

Baker, V. 213

Bartlett, P. L. 58

Barto, A. 17, 24, 25, 55, 147, 148,
150-152, 169, 180, 181

Baskaran, V. 27, 209

Baum, J. 26, 57, 195

Baxter, J. 58

Bellman, R. 17, 34, 37

Bernstein, D. S. 61

Bertsekas, D. P. 54

Biesadecki, J. 212

Birchfield, S. 59

Bonet, B. 22, 24, 55, 56, 151, 181, 242

Bornstein, B. 211

Bote, R. 213

Boutilier, C. 20, 25, 26, 57-59, 195,
201, 243

Bowen, H. 215

Bowling, M. 55

Boyer, D. 212, 213

Bradtke, S. 17, 24, 25, 55, 147, 148,
150-152, 169, 180, 181

Brafman, R. I. 55, 56, 59, 61

Bresina, J. L. 212, 243

Browne, W. 215

Burke, H.-H. 213

Burl, M. 213

Cabrol, N. A. 12, 26, 27, 209, 214, 215,
217

Calderén, F. 27, 209

Calvin, W. 19

Carman, S. 215

Casper, J. 19

Cassandra, A. R. 20, 45, 52-54, 60, 62,
96

Castafio, A. 211

Castafio, R. 19, 26, 209, 211-213

Charlin, L. 57

Cheng, H.-T. 52, 53

Cheng, Y. 212

Chien, S. 212, 213

Chong Diaz, G. 12, 26, 209, 214, 215,
217

Chouinard, C. 212

Chrisman, L. 61

Christensen, P. R. 19

Cichy, B. 212, 213

Clancey, W. J. 213

259



Author Index

Clancy, P. 215

Clark, B. C. 19

Cockell, C. S. 12, 26, 209, 214, 215,
217

Conway, J. H. 144

Coppin, P. 12, 26, 209, 214, 215, 217

Crisp, J. A. 19

Croz, J. D. 86

Dansey, L. E. 215, 217

D’ Augustino, J. 213

Davies, A. 212, 213

Davis, R. 19

Dayton, T. 213

Dean, T. 57

Dearden, R. 26, 57, 195, 201, 213
DeCoste, D. 19, 26, 209, 212
Demergasso, C. 12, 26, 209, 214, 215
Dial, G. 215

Dietterich, T. G. 56

Doggett, T. 213

Dohm, J. M. 12, 26, 209, 213-215, 217
Dongarra, J. J. 86

Drake, A. W. 52

Draper, D. 20

Dugundji, J. 68

Dunlop, H. 211

Emani, S. 215, 217
Ernst, L. A. 12, 26, 209, 214, 215, 217
Estlin, T. 19, 26, 209, 211-213

Farrand, W. H. 19

Feng, Z. 25, 26, 57, 195

Ferguson, D. 62

Fine, S. 56

Fisher, F. 19, 26, 209, 212, 213
Fisher, G. 12, 26, 209, 214, 215, 217
Fox, J. 211

Fraser, H. 62

Fratantoni, D. M. 19
Frye, S. 212,213

Gaasback, J. V. 213

Gaines, D. 19, 26, 209, 212, 213

Geftner, H. 22, 24, 55, 56, 151, 181,
242

Gerlach, F. 215

Givan, R. 57, 61

Glasgow, J. 12, 26, 209, 214, 215

Goldszmidt, M. 201

Gor, V. 211

Gordon, G. J. 20, 23, 24, 26, 54, 56, 57,
61, 62,72, 82, 129, 133-135,
138-140, 181, 195, 242

Granas, A. 68

Greeley, R. 213

Greig, M. 57

Griffin, M. 213

Grin, E. A. 12, 26, 209, 214, 215, 217

Grodecki, J. 215

Grotzinger, J. P. 19

Gruber, P. 54, 144

Guestrin, C. 26, 195

Gulick, V. C. 211

Hammarling, S. 86

Hanks, S. 20

Hansen, E. A. 25, 26, 55-58, 61, 195,
242

Hanson, R. J. 86

Hardgrove, C. 12, 26, 209, 214, 215

Hart, P. E. 55, 242

Hauskrecht, M. 17, 23, 53-55, 60, 62,
69-71, 79-82, 102, 106, 110

Herkenhoff, K. E. 19

Heys, S. 27, 209, 215, 217

Hingemihle, J. 213

Hock, A. N. 12, 26, 209, 214, 215, 217

Hoey, J. 57, 62, 201

260



Author Index

Hsiao, K. 62

Immerman, N. 61
Izadi, M. 141

J.FE. Bell, 1. 19

Jarecke, P. 215

Jaulmes, R. 61, 243

Johnson, J. R. 19

Jonak, D. 12, 26, 27, 209, 214, 215
Jong, N. K. 62, 243

Jonsson, A. K. 212, 243

Jordan, M. 58

Judd, M. 19, 26, 209, 211-213

Kaelbling, L. P. 20, 45, 58, 60, 62, 96,
154
Kakade, S. 58
Kearns, M. 58
Kim, K.-E. 58
Klingelhofer, G. 19
Knoll, A. H. 19
Koenig, S. 60
Koller, D. 26, 195
Korf, R. E. 55
Kurien, J. A. 60

Lanni, F. 215, 217

Lees, D. 213

Leger, P. C. 212

Lekien, F. 19

Leonard, N. 19

Likhachev, M. 56, 181, 242

Littman, M. L. 20, 45, 52-54, 60-62,
84, 95, 96, 243

Loch, J. 59

Lovejoy, W. S. 55, 102

Lozano-Perez, T. 62

Liiders, R. A. 27, 209

Maimone, M. W. 212

Mandl, D. 212, 213

Manduchi, R. 211

Mansour, Y. 58

Marinangeli, L. 12, 26, 209, 214, 215,
217

Mazzoni, D. 19, 26, 209, 212

McAllester, D. 57

McCallum, A. R. 59

McLennan, S. M. 19

McMabhan, H. B. 56, 181, 242

McSween, H. Y. 19

Meuleau, N. 58, 213

Mihailidis, A. 62

Minkley, E. G. 12, 26, 209, 214, 215,
217

Mjolsness, E. 211

Moersch, J. E. 12, 26, 209, 214, 215,
217

Monahan, G. E. 52, 54

Moore, A. W. 58

Moorehead, S. 213

Morris, P. H. 212, 243

Morris, R. L. 211

Morris, R. V. 19

Munos, R. 54

Murphy, R. R. 19

Muscettola, N. 213

Myers, K. L. 241

Nesnas, 1. 212

Ng, A. Y. 58

Nicholson, A. E. 26, 57, 195
Niekum, S. 211, 212
Nilsson, N. J. 55, 242
Nourbakhsh, I. 59, 241

Oleszczuk, R. 215
Ori, G. G. 12, 26, 209, 214, 215, 217

Paley, D. 19

261



Author Index

Pane, D. 27, 209, 215, 217

Papadimitriou, C. H. 52

Pardoe, D. 62, 243

Parr, R. 26, 55, 195

Pearl, J. 242

Pearlman, J. 215

Pedersen, L. 20, 211-213

Piatek, J. L. 12, 26, 209, 214, 215, 217

Pineau, J. 20, 23, 24, 26, 54, 56, 61, 62,
72, 82, 129, 133-135, 138-140, 195,
243

Poole, D. 57

Porta, J. M. 60

Poupart, P. 20, 25, 55, 57-60, 62, 195

Powers, R. 59

Precup, D. 61, 141, 243

Pudenz, E. 12, 26, 209, 214, 215

Rabideau, G. 212, 213
Rajan, K. 212, 213, 243
Ramakrishnan, S. 213
Raphael, B. 55, 242
Rice, J. W. 19

Rieder, R. 19

Rote, G. 54

Roth, M. 61

Roush, T. L. 211

Roy, N. 20, 57, 62, 243
Russell, S. 55, 56
Ruzon, M. A. 211

Schaffer, S. 212
Schulman, S. 213
Schuurmans, D. 55
Segal, C. 215
Sepulchre, R. 19
Shamah, B. 19

Shani, G. 56, 59, 61
Sherwood, R. 212, 213
Shillcutt, K. 19

Shimony, S. E. 56, 61

Shioda, R. 57

Shulman, S. 212

Sierhuis, M. 213

Simmons, R. 19, 56, 60, 61, 70, 115,
152, 168, 174

Simmons, R. G. 212

Singer, Y. 56

Singh, S. 17, 24, 25, 55, 57, 59, 61, 62,
147, 148, 150-152, 169, 180, 181,
243

Sloane, N. J. A. 144

Smith, D. E. 213

Smith, T. 12, 26, 27, 56, 70, 115, 152,
168, 174, 209, 211, 212, 214, 215,
217,226

Soderblom, L. A. 19

Sondik, E. J. 20, 23, 52, 54, 58

Spaan, M. T. J. 20, 24, 54, 60, 61, 72,
82

Squyres, S. W. 19

St. Aubin, R. 57, 201

Stentz, A. 20, 62, 243

Stone, P. 62, 243

Stubbs, K. 12, 26, 209, 214, 215, 217

Sutton, R. S. 61

Tang, N. 213

Tarski, A. 68

Teza, J. P. 27, 209, 215, 217

Theocharous, G. 56

Thomas, G. 12, 26, 209, 214, 215, 217

Thompson, D. R. 12, 26, 209, 211, 212,
214,215

Thrun, S. 20, 23, 24, 26, 54, 57, 60, 62,
72, 82, 129, 133-135, 138-140, 195,
243

Tishby, N. 56

Tompkins, P. 213, 243

Tompkins, P. D. 27, 209, 212

262



Author Index

Tran, D. 212, 213
Trout, B. 212, 213
Tsitsiklis, J. N. 52, 54
Tunstel, E. 212

Ungar, S. 213
Urmson, C. P. 212

Veloso, M. 61

Vera, A. 213

Villa, D. 27, 209

Virin, Y. 56

Vlassis, N. 20, 24, 54, 60, 61, 72, 82
von Bertoldi, A. 62

Waggoner, A. S. 12, 26, 209, 214, 215,
217

Wagner, M. D. 12, 19, 26, 27, 209, 211,
214,215, 217

Wang, T. 55

Warren-Rhodes, K. 12, 26, 209, 214,
215,217

Washington, R. 213

Weinstein, S. J. 12, 26, 209, 214, 215,
217

Weisstein, E. 144

Weld, D. 20

Wettergreen, D. 211

Wettergreen, D. S. 12, 26, 27, 209, 212,
214, 215, 217

White, C. C. 52, 54

Whittaker, W. L. 19, 211, 243

Williams, C. 27, 209

Williams, K. 213

Williams, R. J. 36, 58, 135, 139

Wyatt, M. 12, 26, 209, 214, 215

Zhang, N. L. 20, 22, 53, 54, 65, 67, 73,
74, 84

Zhang, W. 22, 53, 65, 67, 73, 74, 84

Zhou, R. 55, 56

Zilberstein, S. 61, 242

263



	Contents
	Introduction
	Thesis Statement
	Document Outline
	Focused Value Iteration (Chapter 3)
	POMDP Value Function Representation (Chapter 4)
	Max-Planes Approximation Bounds (Chapter 5)
	Heuristic Search (Chapter 6)
	State Abstraction (Chapter 7)
	Science Autonomy (Chapter 8)
	Software Contributions
	Summary

	Probabilistic Planning Background
	Deterministic Planning
	Uncertainty in State Transitions
	Policies and Value Functions
	Value Iteration
	Search Graphs and Policy Graphs
	Partial Observability
	Belief MDP Value Function Structure
	Relating Max-Planes Structure to the Bellman Update
	Prior Research on POMDPs
	Foundations
	Value Iteration
	Point-Based Value Iteration
	Value Function Representation
	Heuristic Search
	Structured Approaches
	Policy Gradient Approaches
	Policy Iteration
	History-Based Approaches
	Policy Heuristics
	Continuous POMDPs
	Decentralized POMDPs
	Model Learning
	Applications


	Focused Value Iteration
	Value Function Representations and Update Operators
	Using Uniform Improvability to Bound Regret
	Generating Uniformly Improvable Bounds
	Point-Based Updates
	The Focused Value Iteration Algorithm

	POMDP Value Function Representation
	Linear Algebra Notation
	Constructing Uniformly Improvable Bounds
	Lower Bound Initialization: The Blind Policy Method
	Upper Bound Initialization: The Fast Informed Bound Method

	Adding Planes to the Max-Planes Representation
	Leveraging Sparsity with the Max-Planes Representation
	Compressed Data Structures
	Alpha Vector Masking (Novel Approach)
	Masked Vector Performance Analysis
	Complexity Comparison

	Pruning the Max-Planes Representation
	Pairwise Pruning (Prior Approach)
	Lark's Filtering Algorithm (Prior Approach)
	Bounded Pruning (Prior Approach)
	Passive Bounded Pruning (Novel Approach)
	Combined Passive+Pairwise Pruning

	Upper Bound Representation
	Convex Hull Projection (Prior Approach)
	Sawtooth Projection (Prior Approach)
	Leveraging of Sparsity with Sawtooth (Novel Approach)
	Pruning the Sawtooth Representation

	Hybrid Tabular Representations (Novel Approach)
	Experimental Performance
	Performance Versus Time Plots
	Equal Precision Comparison
	Error Distributions

	Conclusions

	Max-Planes Approximation Bounds
	Technical Background
	Fully Tangent Bounds and Belief Sampling
	Uniform Sampling
	Concentrating Samples By Reachability
	Reachability: Implications for Algorithm Design

	Concentrating Samples By Curvature
	Curvature: Implications for Algorithm Design

	Conclusions

	Heuristic Search
	Problem Classes
	RTDP Review
	Heuristic Search Value Iteration (HSVI)
	HSVI Bounds Intervals
	HSVI Action Selection
	HSVI Outcome Selection
	Running HSVI in Anytime Fashion

	Focused Real-Time Dynamic Programming (FRTDP)
	Search Graph Expansion
	FRTDP Outcome Selection
	Adaptive Maximum Depth Termination

	Theoretical Results
	HSVI Termination
	FRTDP Termination

	Experimental Results
	MDP Results
	POMDP Results

	Conclusions

	POMDP State Abstraction
	Example Problem
	POMDP Review
	Conditional Relevance
	Relevance Determination
	Finding Immediately Relevant Variables
	Finding Predictable Variables
	Finding Conditionally Relevant Variables

	Model Abstraction
	Application to MiniLifeSurvey
	Application to LifeSurvey
	Conclusions

	Science Autonomy
	Related Work on Science Autonomy
	Onboard Science Data Analysis and Selective Data Return
	Scientist Priorities
	Science Autonomy Planning Systems

	Robotic Investigation
	Autonomously Responding to Evidence of Life
	The Fluorescence Imager (FI) Instrument
	Chlorophyll Detection Experimental Procedure
	Chlorophyll Detection Image Analysis
	Chlorophyll Detection Experimental Results

	Efficiently Mapping the Distribution of Life
	Mapping Scenario
	LifeSurvey Problem Definition

	Experimental Evaluation
	LifeSurvey Planners: Blind, Reactive, and POMDP
	Onboard Testing
	Simulation Testing: Adapting to Changes in the Problem
	Simulation Testing: Robustness to Model Error

	Conclusions

	Conclusions
	Software Contributions
	Future Work
	Continuous Planning
	Better Understanding of MDP Heuristic Search
	Integrating POMDP Planning With Rover Operations

	Summary

	Bibliography
	Author Index

