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Introduction: Planetary scientists will soon bene-
fit from a new generation of exploration rovers that
can travel long distances in a single communications
cycle. Much of this terrain will never be seen by hu-
mans so these rovers must autonomoudly identify in-
teresting features for data collection [1]. They must
also be able to prioritize the most important data for
transmission to Earth. When a tightly-controlled tele-
operation loop is infeasible autonomous data under-
standing lets scientists explore more terrain while opti-
mizing the quality of the returned data [2,3].

Here we investigate context-sensitive models for
onboard data analysis. These “science maps’ consider
not only the raw data but also the sampling location.
They improve onboard data understanding by reveal-
ing environmental trends and boundaries that can in-
form autonomous sampling and data return decisions.
They aso help identify novel features by highlighting
anomalies that are unexpected in context of the local
environment. In this work, tests with navigation im-
agery suggest that context-sensitive data analysis using
a Hidden Markov Modd [4] offers performance bene-
fits for novelty detection during rover traverse.

Technical Approach: We focus on an image se-
guence from an autonomous rover traverse in the Ata-
cama Desert (a Mars-analogue desert in Chile) [5].
The rover platform for these tests was Zoé, an explo-
ration robot developed at Carnegie Méellon [1]. Zog is
capable of navigating autonomously at up to 1m/s for
multiple kilometers. We chose a traverse of 1888 nav-
igation images from remote science operations during
the NASA ASTEP “Life in the Atacama’ expedition.
This drive began on a rocky hillside and descended
into a basin covered in finer material.

Image Processing The 320x240 pixel color images
were captured at two-meter intervals from cameras
mounted on the rover mast. They provide a 60° field
of view of the terrain in front of the rover. We split the
foreground half of each image into a grid of 10-pixel
cells; each cell constitutes an independent “sample” of
the imaging site (Figure 1). The system computes nu-
merical attributes for the color and texture of each cell
so that an image provides 384 distinct samples in col -
or-texture space. We use the cell's fractal dimension
[6] as an efficient texture measure, and color normal-
ize images using the “greyworld” strategy [7].

Model Parameters The sequential structure of
rover traverse imagery makes it amenable to descrip-

Figure 1: Navi gationiag T r| rac
color and texture data from foreground grid squares.

tion by a Hidden Markov Model (HMM). The HMM
uses “hidden states” to estimate the unobserved bio-
logic or geologic characteristics of the rover's environ-
ment. This permits context-sensitive novelty detec-
tion; the rover can account for the expected loca envi-
ronment when evaluating an image's likelihood.
HMMs can also identify environmental boundaries
using techniques like the Viterbi algorithm [10].

A graphical representation of the HMM appears in
Figure 2. The model quantifies relationships between
neighboring states (transition probabilities) and the
likelihood of each state generating a particular ob-
served grid cell (emission probabilities). Its chain
structure reflects the persistence of environmental con-
ditions; the current state influences expectations for
the next image's content. Our implementation utilizes
atied continuous- density Gaussian mixture model [8].
The Baum-Welsh algorithm [9] assigns model parame-
ters which can then be used to estimate the hidden
state for any image. We find parameters using the en-
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Figure2: A graphical depiction of the HMM model.
Arrows represent correlations between variables; at
each time step t a hidden state X probabilistically
generates a set of observed grid cells.



tire dataset but one could estimate models from partial
data for adaptive sampling decisions during traverse.

Novelty Detection: With the complete data model
one can find the likelihood of any grid cell in an im-
age. Figure 3identifiesgrid cells corresponding to the
most unlikely image cells; these suggest cites for addi-
tional autonomous data collection.

More generally one can identify novel images for
prioritized transmission to Earth. In this work we
compare different data models performance in detect-
ing novel images from the traverse dataset. Absolute
novelty detection performance is inherently subjective
but we can ill perform a relative comparison by
choosing a set of rare “target” image features that are
unambiguous to identify. We use plants (appearing in
132 images) rocks with an axis longer than 30 pixels
(31 images), and the rover shadow (28 images). If the
rover prioritizes images in order of decreasing novelty,
the number of targets which are chosen gives some in-
dication of how a model's likelihood estimates align
with human notions of novel image content.

We used random model initializations to generate
20 trials simulating two different novelty detection
drategies: a two-state HMM with three mixture com-
ponents and a statel ess three-component mixture mod-
el. The stateless case is not context-sensitive; it ig-
nores each image's sequence position and treats all
data products as independent.

Figure 4 shows the results of the experiment with
boxes illustrating the middle data quartile and notches
the 95% confidence interval for the median. A random
data return policy provides a performance baseline.
Both novelty detection methods exhibit good selectivi-
ty for the chosen features. The context-sensitive
HMMs provide the best overall performance for this

Figure 3: Examples of detected novel images: (1)
large rock (11) high-albedo patch (111) plant life. Red
squares indicate the most novel cell of each image.
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Figure 4: Performance graph showing selectivity for

novel image features from the traverse.

dataset. Figure 3(I1) shows one example of a novel
image favored by the HMM. Individual cells from this
high-albedo patch are smilar to salt deposits visited
earlier, but they are novel in context of the local envi-
ronment.

Conclusion: HMMs have several characteristics
that recommend them for autonomous science tasks
dealing with sequential data. HMMs are theoretically
well understood and computationally efficient. Pre-
liminary tests suggest they may offer improved novel-
ty detection performance.

The simple image analysis in this work contrasts
with the complex pattern recognition we have favored
in previous autonomous geology experiments. For
planetary rover applications demanding computational
efficiency, environment models may offer a compli-
mentary path to improve science autonomy.
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