
Robotics: Science and Systems 2018
Pittsburgh, PA, USA, June 26-30, 2018

1

1

Trajectory Optimization On Manifolds with
Applications to SO(3) and R3 × S2

Michael Watterson1, Sikang Liu1, Ke Sun1, Trey Smith2, and Vijay Kumar1

Abstract—Manifolds are used in almost all robotics applica-
tions even if they are not explicitly modeled. We propose a
differential geometric approach for optimizing trajectories on a
Riemannian manifold with obstacles. The optimization problem
depends on a metric and collision function specific to a mani-
fold. We then propose our Safe Corridor on Manifolds (SCM)
method of computationally optimizing trajectories for robotics
applications via a constrained optimization problem. Our method
does not need equality constraints, which eliminates the need to
project back to a feasible manifold during optimization. We then
demonstrate how this algorithm works on an example problem
on SO(3) and a perception-aware planning example for visual-
inertially guided robots navigating in 3 dimensions. Formulating
field of view constraints naturally results in modeling with the
manifold R3 × S2 which cannot be modeled as a Lie group.

I. INTRODUCTION

Using differential geometry for trajectory optimization in
robotics has been often used with manifolds such as the
special orthogonal groups SO(n) and special euclidean groups
SE(n). [27] used this theory to generate curves for a free-
flying space robot. More general works like [1], generated
trajectories for rigid bodies based on the metric proposed by
[29] which ensured the associated affine connection obeys the
differential structure of rigid body dynamics. [3] shows how
to compute a basis of trajectories for robots using differential
geometry by decoupling dimensions, but requires zero velocity
in between each segment of a multi-dimensional motion.

Polynomials and rational splines are frequently used for
optimization on Euclidean spaces Rn as part of the algorithms
in [15], [32], [23], [14], [8], [18]. There are more specialized
methods for modeling Bézier curves on manifolds using geo-
metric constructions from [19] applied to rigid body motion.
More recently, [20] proved properties of this construction and
showed how to construct splines with this method. These are
recursive definitions for Bézier curves, but the derivatives do
not have the same convenient knot properties as the Euclidean
case such as the end velocity being a linear function of the
control points.

Trajectory optimization with obstacle avoidance is a well
studied problem on R3. Using convex polyhedra to model free

This work was supported by a NASA Space Technology Research
Fellowship, ARL grants W911NF-08-2-0004, W911NF-17-2-0181, ONR
grants N00014-07-1-0829, N00014-14-1-0510, ARO grant W911NF-13-1-
0350, NSF grants IIS-1426840, IIS-1138847, DARPA grants HR001151626,
HR0011516850.

1The authors are with the GRASP Lab, University of Pennsylvania, 3330
Walnut Street, Philadelphia, PA 19104, USA. email: {wami, sikang,
sunke, kumar}@seas.upenn.edu.

2Trey Trey Smith is with the NASA Intellegent Robotics Group,
NASA Ames Research Center, Moffet Field CA, USA. email:
trey.smith@nasa.gov.

Fig. 1: Example 2-dimensional manifold embedded in R3 with
a trajectory γ in red. The video for this paper can be found at
https://youtu.be/gu8Tb7XjU0o

space has been done in [7] and [14] with mixed integer pro-
gramming and quadratic programming respectively. [25] used
a collision cost function with sequential convex programming.
Others [10], [31] use spheres to model free space with convex
programming to generate dynamically feasible trajectories.
Some methods [23], [18], use collision data directly from an
occupancy grid during the optimization process, but are not
guaranteed to converge to a feasible solution in polynomial
time.

CHOMP [32] formulates a trajectory optimization problem
on Hilbert spaces rather than Riemannian manifolds and
uses variational calculus to compute gradients. They enforce
collision free constraints by adding a term to their cost
functional similar to barrier functions [2]. A philosophical
difference between that works and ours is that we focus on
manifolds which are directly parameterizable but require mul-
tiple parameterizations ex.(SE(n), Sn, RPn) as opposed to
parameterizations which have one chart in Rn, but have com-
plicated constraints (ex. serial chain manipulators with task
space collision avoidance). The construction of our algorithm
ensures that the optimization does not have to enforce non-
linear equality constraints unlike [32]. This is important be-
cause optimization iterations are represented with a minimum
number of dimensions, thus stay implicitly on the manifold
and do not have to be projected back. [11] formulates RRT?

on a manifold using random sampling, but their construction of
manifold charts requires iteratively projecting using Newton’s
method.

Perception aware planning [6] for vision based navigation
has been explored with a variety of approaches. [4] summa-
rizes a large variety of works from before 2010. Some relevant
works from before and after then include [30] use an extension
of a Probabilistic Road Map (PRM) which incorporates a
information-theoretic model to improve observation of land-
marks during path planning. [21] uses an observation model
to generate collision free trajectories to maximize the conver-

https://youtu.be/gu8Tb7XjU0o

2

gence of a monocular visual-inertial estimator. Maintaining a
level of features in view through a re-planning framework was
done in [24].

The main contributions of this work are:
• A manifold trajectory optimization algorithm which op-

timizes without projecting to the manifold from a higher
dimensional embedding, is parameterization invariant and
is formulated without equality constraints.

• The addition of free-space constraints via convex sub-
approximation on coordinate charts.

• An application of this method for navigation with con-
strained field of view visual estimation.

• An application of this method for trajectory generation
on SO(3) with obstacle avoidance.

We formulate the free space constraints on a chart and not
intrinsically for two reasons: first, a convex region on a chart
may result in a convex optimization while describing a region
which is non-convex on a manifold and second, it is easier
to transform into a numerical optimization. For example, a
region of S2 larger than a hemisphere is never convex using
the geodesic definition of convexity, but can be convex in
stereographic coordinates.

This paper is organized with a background Section II
followed by four main sections. We describe the manifold
optimization and safe corridor algorithm in Section III. Then
in Section IV, we describe how to use our method on the
example of R3×S2 for the application of a quadrotor with an
active, gimbaled camera. In Section V, we discuss an example
of how to plan trajectories on SO(3) using this method. Finally,
in Section VI, we present results with experimental hardware
using this trajectory generation algorithm.

II. PRELIMINARIES

We will briefly review a few important definitions and
properties of Riemannian manifolds that are critical to our
algorithm. For a more detailed explanation of these concepts,
please refer to [9].

Manifold: A manifoldM is an n-dimensional subset of Eu-
clidean space Rm with n ≤ m which is locally homeomorphic
to Rn.

Chart: We define a chart as a function ϕ : Rn →M which
is a local n-dimensional parameterization of the manifold.
Since the manifold is homeomorphic to Rn, ϕ is locally
invertible. If ϕ and ϕ−1 are both differentiable infinite times,
we say the manifold is a smooth manifold. For the scope
of this work, we will assume all manifolds to which we
apply our formulation are smooth. Common examples of
smooth manifolds are Rn, SO(n), SE(n), Sn, and RPn. As
a consequence of the homeomorphic property, we can find a
chart ϕp : Rn →M centered at p such that a ball of radius ε
around the origin is homeomorphic to an open subset of M
containing p for every ε ∈ (0, δ) for some δ > 0. A chart with
this property is drawn in Figure 2, this is important, because
for a small enough curve γ : [0, 1]→M, we can always find
a chart ϕγ and function η : [0, 1]→ Rn such that ϕγ ◦ η = γ.
It is important to note, that for a curve γ with arbitrary length,
it is not always possible to find a parameterization which only
spans one chart.

Vector on a Manifold: A vector on a manifold at a point p
is a derivative quantity which is tangent to the manifold at p.
Since our manifold is n-dimensional, the differential structure
lives in a space homeomorphic to Rn. For our purposes, it
is fine to just use V = η̇ as a vector, and not worry about
coordinate free ways to define the vector.

Metric: A metric is a defined inner product 〈., .〉 between
vectors on a manifold. For example the magnitude of the
velocity of a curve in coordinates with V = η̇ is:

〈V, V 〉 =
∑
ij

gijViVj (1)

With gij being a function of the point on the manifold. For a
single chart ϕ that is a function of the variables x1..xn, we
can default to using the metric:

gij =
∑
l

∂ϕl
∂xi

∂ϕl
∂xj

(2)

If we want to have our metric make physical sense for a
dynamical system, we can choose an appropriate gij which
are compatible with the chosen manifold [29][3].

Riemannian Manifold: A manifold, along with a metric,
is called a Riemannian manifold. For this paper, we assume
that all manifolds are Riemannian and thus our formulation
will require having a metric.

Covariant Derivative To calculate higher derivatives vec-
tors, we use the covariant derivative ∇ which defines the
derivative of vectors along each other. The acceleration of a
curve on the manifold is defined as ∇V V . We can also chain
the ∇ operator to get define jerk and higher derivatives.

∇V∇V∇V ...∇V V︸ ︷︷ ︸
n ∇’s’

= ∇nV V (3)

In coordinates ξ, these are evaluated as:

∇V V = ξ̈k +
∑
ij

Γkij ξ̇iξ̇j (4)

∇V∇V V =
...
ξ k +

∑
ij

Γkij ξ̇i(ξ̈j +
∑
lm

Γjlmξ̇lξ̇m) (5)

Christoffel symbols: The Γkij in the above equation are called
the Christoffel symbols. We can compute them from the metric
with gij being the ith, jth element of the matrix G−1 if the
matrix G elements are gkl.

Γkij =
1

2

∑
l

gkl(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

) (6)

Coordinate Invariant: A mathematical object in relation to
a manifold is coordinate invariant if its value is the same
regardless of the chart and or basis which is used to describe
it. For some of the following definitions it is not obvious why
the values are independent of the coordinate chart. See the
more detailed reference for proofs of this critical property
[9]. For example, the components in ∇V V in Equation 4
depend on the coordinate chart ϕ as we implicitly choose a
basis for the vector V. However, the value 〈∇V V,∇V V 〉 is
independent of the coordinate chart. We note that constraints
of the form ∇V V = 0 are also coordinate free because there

3

is a linear transform L between any two sets of basis vectors
and L(0) = 0.

Geodesic: The shortest path between two points on a
manifold can be found by solving the system of differential
equations ∇V V = 0 with the boundary condition of the two
points.

'

�

Fig. 2: A chart centered at p which is homeomorphic over a
domain of a ball of radius δ.

III. MANIFOLD PROBLEM FORMULATION

With a differential geometry based formulation, we would
like to have several properties: first, to be independent of
coordinates; second, to be calculable; and third to be physically
meaningful. While the third might seem difficult to do without
a specific manifold, our formulation actually allows for it.
We use a class of functionals from [29] which depend on
a metric for the manifold. As in [1], these can be used to
describe physical dynamics. For example, when the manifold
is SE(3), the connection can be chosen to describe the rigid
body translational and rotational accelerations.

Along with the background in the previous section, our
formulation also assumes we have a function C(p) : M →
{True, False} which determines if a point p is in Cfree. This
collision checking does not appear in the works [3] or [1]. We
can use this function, along with a coordinate chart to check
the collision of a value in Rn. Our formulation is:

min
ξ

∫ T
0
〈∇nV V,∇nV V 〉dt

st. ξ(0) = ξN
ξ(T) = ξF
ξ ∈ Cfree
ξ̇ = V
∇kV V (0) = Nk k = 1..p
∇kV V (T) = Fk k = 1..p
〈∇kV V,∇kV V 〉 ≤ Lk k = 1..p

(7)

Where Lk is a set of scalar Limits on the velocity, acceleration,
up to the pth derivative. Nk and Fk are vector boundary
conditions on the iNitial and Final derivative constraints of
the trajectory and ξN and ξF are the iNitial and Final points
on the manifold. We note that these conditions are coordinate
invariant in the sense that if their value is given in one chart,
they can be transformed into a different chart to give the same
meaning on the manifold even if their value is different. In the
case that they are homogeneous (Nk = 0 and Fk = 0) those
constraints are the same in any coordinate chart as stated in
the previous section. The ξ ∈ Cfree constraint will be detailed
in the next section.

The cost functional is coordinate free and a generalization of
the cost functionals used in [27] [1] to arbitrary derivatives.
Alternatively it can be seen as a generalization to arbitrary
manifolds of the cost functional used in [23] [14] [15] [7].

A. Algorithm Overview

The Safe Corridor on Manifolds (SCM) can be interpreted
as generalization of the safe flight corridor in [14]. Instead of
optimizing over a full constraint manifold, we optimize a tra-
jectory over a piecewise convex region of the parameter space
representation of a manifold. For a convex cost functional,
this approximates a non-convex optimization problem with a
convex one and thus can be solved quickly and efficiently with
global optimality constraints during the optimization phase. On
the full manifold, we note that this method is locally optimal
with respect to a reference path.

The basic idea is as follows: 1 generate a collision free
“optimal” path from a graph search on the manifold, then 2:
form a locally convex corridor in a local parametrization of
the manifold around this path, and 3: optimize a trajectory
using the set of local parameters around which the convex
corridor is described. This basic picture is shown in Figure 3
with a manifold and three regions of the corridor with their
associated coordinate charts.

B. Path Finding on Manifolds

Collision free path finding is a much easier problem than
finding collision free dynamically feasible trajectories (posi-
tion + higher order constraints) especially since the search
space of a dynamically feasible trajectory of an n dimensional
trajectory with d dimensions of dynamics information requires
search on n · d dimensions of space. Since graph search algo-
rithms are O(v log v + e) runtime for v vertices and e edges,
the runtime of the search will be at least O(nd log nd) for
a space sampled with the same distance resolution. For even
a small number of dimensions (ex. 5), the bottleneck of the
trajectory generation algorithm is in the graph search. Thus,
for tractability, it is better to search over as low dimensional
space as possible. In state of the art search based methods over
very high dimensions [26] using RRT methods [12][13], the
search is biased towards a much lower dimensional manifold
to achieve reasonable runtime performance. The worst case
runtime of those algorithms was not considered in their work
because the algorithms’ probabilistic nature cannot guarantee
convergence in finite time.

We can construct a graph on a manifold with a series
of points on the manifold connected with edges which are
geodesics. With such a graph, we assume the edges are non-
overlapping, thus we can construct this graph on an arbitrary
manifold with arbitrary points by connecting all pairs of points
with geodesic edges. Whenever two geodesics intersect, we
remove the longer of the two. We want the points to uniformly
cover the manifold. Searching over this graph can search over
the complete manifold up to a small discretization error. This
is the same notion as searching over a discrete grid on Rn
instead of the full continuous space. This graph construction
can also be done in a more structured way, as we will do with

4

S2, because there are easy constructions for geodesic grids.
There are also versions of structured grid constructions on
SO(3) used in [28]. Performing graph search on this manifold
grid is done using the geodesic length as the edge length and
A? heuristic. No modification is needed for A? because graph
search only needs nodes and edges and does not care how it
is embedded in a manifold. In addition, the graph construction
and search can be done in parallel to avoid building up large
mostly-unexplored graphs in higher dimensions.

C. Safe Corridor on Manifolds

For any path H = (h1, . . . , hm) of points on the manifold
which are sufficiently close to each other, we can find a
corresponding sequence of charts with one chart ϕi centered
at each hi. RILS [14] computes a convex polyhedron around a
line segment in 3D. We can extend this by finding a collision-
free polyhedron on each domain of each chart, then adding
them to a list of polyhedra P . This is done by creating a
voxel grid on the parameter space, then checking collision
of all the voxels through the composition of C ◦ ϕi. With
an Rn occupancy grid, we perform an inflation around the
line l(0, ϕ−1

i ϕi+1(0)) using n-dimensional RILS. The n-
dimensional version is the same as the 3D version, except
the ellipsoids are expanded about extra minor axes during the
inflation step. Finally, the set of charts is pruned if the geodesic
between the center of adjacent charts is collision free and less
than a length of δ.

Algorithm 1 Calculating the safe corridor on a manifold. Will
return a set of charts Ψ and a set of polyhedra P .

1: (Φ,P)← {}
2: H ← Manifold A?(pN , pF)
3: for hi ∈ H do
4: Find ϕi, such that ϕi(0) = hi
5: Φ← {Φ, ϕi}
6: P ← {P, RILS((ϕi)−1 ◦ Geodesic(ϕi(0), ϕi+1(0)))}
7: end for
8: for (ϕi,Pi) ∈ (Φ,P) do
9: if ϕi−1(Line(0, (ϕi−1)−1 ◦ ϕi+1(0)) is collision free

and d(ϕi−1(0)), ϕi+1(0)) < δ then
10: Prune (ϕi,Pi)
11: end if
12: end for
13: return (Φ,P)

D. Optimization on manifold

All the quantities in Equation 7 are continuous values with
continuous constraints. To numerically compute the optimiza-
tion, we need to convert an infinite dimensional functional
optimization to a finite dimensional one. In the literature, this
is done by either using splines [15][27][14] [23] [7][8] or using
a discrete time optimization [2]. It is well known that splines
can approximate arbitrary continuous functions within a given
ε > 0 [17]. Inequality constraints are more complex than the
discrete case, but require far fewer optimization variables.

Computing the integral in Equation 7 cannot be done
in closed form for a general manifold. We can compute
an approximation of the integral using Gaussian quadrature
to approximate it as a sum of the functional evaluated at
some ti with weights wi which are found in [22]. For some
Riemannian manifolds with enough wi, this will actually be
exact: ∫ T

0

f(t)dt ≈
∑
i

wi · f(ti) (8)

We choose to represent the trajectory as a polynomial spline
in the parameter space of the charts ϕi we found in Algorithm
1. Each chart has an associated polynomial pi(s) : (0, 1) →
Rn, which corresponds to the ith segment of the trajectory
with normalized time. This is represented as a sum of basis
polynomials bj(s) and coefficients αij ∈ Rn. To evaluate the
trajectory, there is also an associated time interval for each
polynomial ∆i ∈ R+.

pi(s) =
∑
j αijbj(s)

ξi(t) = pi(
t−ti
∆i

)

(ti+1 = ti + ∆i, t0 = 0)

(9)

The reason we keep the polynomials evaluated in the
interval [0, 1] as opposed to [0,∆i] is done for numerical
computing reasons. For example, [23] found numerical issues
in [15] with polynomials of degree greater than 9 which we
partly attribute to this difference in modeling.

With each polynomial being on a different chart, we need
to explicitly constrain the knot points to be continuous up
to a certain derivative. Using the map (ϕi)−1 ◦ ϕi+1, we
can express equality in terms of the coefficients αij . The
picture of these constraints are shown in Figure 3. If the
polynomial degree is high enough not to be over-constrained
by the required continuity, we can ensure that the constraints
on the ith knot point share no variables with the i+ 1th knot
point when using an endpoint constrained basis. Because of
this, we can replace variables in expressions for the knot points
using the map (ϕi)−1 ◦ ϕi+1. Doing so, will eliminate all
equality constraints on the optimization. In [23], they do this
for the quadratic program case and provided a more detailed
explanation of the endpoint constrained basis.

To confine continuous trajectories inside each polyhedron,
we use the property that the convex hull of the control points
of a Bézier curve is a conservative bound on the convex hull of
the curve [8], this bound can be enforced with linear inequality
constraints [21] [27]. The convex hull of the spline is a subset
of the convex hull of the control points. Thus by confining
the control points, we can guarantee that the trajectory will
be inside the polyhedra. Since the Bézier control points are
a linear transformation of any polynomial basis coefficients,
this confinement can be done regardless of the choice of basis
polynomials.

The full optimization is the nonlinear program, which is in
general non-convex:

min
α,∆

f(α,∆)

s.t g(α,∆) ≤ 0
(10)

5

Where α is a subset of the basis coefficients describing the
trajectory, ∆ is a set of time durations corresponding to the
duration of each segment of the spline. The number of free
α parameters equals the number of coefficients in the spline
minus the number of equality constraints in (7) and number of
knot points for each dimension in Figure 3. After optimizing,
we can solve for the remaining α parameters using the non-
linear chart transition functions.

Printed by Wolfram Mathematica Student Edition

'1

'2 '3

Fig. 3: Constraining equality of spline knot points with convex
polyhedral constraint regions on each chart. Yellow points are
equated between adjacent charts. Green points represent ξN
and ξF .

E. Optimization method

We can solve the optimization problem in Equation 10, with
constrained gradient descent. We implemented the primal-dual
Newton’s method with the centering heuristic as detailed in
[2]. Changing the variable initialization did not seem to affect
convergence, so all values were set to 1. The full optimization
in [14] is usually not convex. In practice, it is straightforward
to find approximately optimal ∆ values using a heuristic
proposed in [14]. With fixed ∆, optimizing only over the α
values is convex for suitable manifolds. Alternatively, the two
sets of variables can be alternately optimized as in [23].

We can model polynomials of both α and ∆ as multi-
dimensional polynomials, with integer powers.

f(x) = ζ
∑
i∈I

βi ∏
j∈Ji

x
qij
ij

 (11)

Where I and Ji are index sets, ζ, βi ∈ R are coefficients and
qij ∈ Z are the integer powers.

The cost functional and inequality constraints are in general
nonlinear functions of these polynomials. In our vision based
example, the cost will be a rational function of these polyno-
mials. We assume we can calculate the gradients and Hessians
of functions of polynomials using the chain rule.

The norm squared in our cost functional results in the
squaring of nonlinear functions with many terms. If our cost is
a polynomial or rational function, expanding out polynomials
in this form leads to inefficient calculations and numerical
robustness issues since the maximum power qij doubles when
the polynomial is squared and the number of terms we need to
store is now O(|I|2). Instead, we can just store the polynomial

or rational function f and square the function after the
evaluation. This results in gradients and Hessians calculated
as:

∂f2

∂xi
= 2

∂f

∂xi
f (12)

∂f2

∂xi∂xj
= 2

∂2f

∂xi∂xj
f + 2

∂f

∂xi

∂f

∂xj
(13)

We found that in practice, this small step dramatically de-
creased the computation time of our algorithm by orders of
magnitude in both overhead computing products of polynomi-
als and evaluation of Hessians.

IV. FIELD OF VIEW CONSTRAINED TRAJECTORY
OPTIMIZATION DETAILS

When planning for vision based navigation, we look at a
system in which we can control the view direction of the
camera on S2. This is analogous to controlling the pan-tilt
of a hardware gimbal, or in our experimental setup, emulate
this in software by cropping the appropriate region of a wide
angle view based on the orientation of the robot. We assume
for sufficiently slow trajectories, the robot orientation is close
enough to hover so the desired cropped image is within the
wide angle lens. In practice, we can rescale the time of
trajectory to fit this even with the aggressive motions shown
the video. We choose this, and not SO(3), because feature
tracking is approximately symmetric with respect to rotations
about the camera z axis, and modeling the viewing region of
a camera as a cone has some convenient geometric properties
which we can exploit with stereographic coordinates.

A. Vision Model

The standard projection equation in normalized image co-
ordinates (px, py) for a cameras whose orientation is R and
position is [x, y, z]T measured in an inertial frame is:

1

λ

pxpy
1

 = R

Xi

Yi
Zi

−
xy
z

 (14)

We use this equation to model whether or not a known feature
in world coordinates is in the field of view of the camera. We
also assume that a feature is only useful for resolving the
position of the robot if it is in a known range of depths.

The optical flow is a function of a point in pixel coordinates
depends on the angular velocity of the camera ω:

ṗ =

[
ṗx
ṗy

]
=

[px·ż−ẋ
λ

py·ż−ẏ
λ

]
+

[
pxpy −(1 + px)2 py

(1 + py)2 −pxpy −px

]
ω

(15)
The front-end of visual-odometry has decreased accuracy

and increased computational load with increasing optical flow.
With Equation 15 and assuming known ranges on the depth
of features and pixel coordinates, we can conservatively upper
bound the optical flow with a linear function of the camera’s
linear and angular velocities. Thus we choose ∇V V as the
derivative we minimize for the S2 part of the cost functional.

6

B. Field of View Formulation
For vision-based navigation, we would like a cost function

which produces a trajectory that is good for the estimator.
Paramount to a VINS estimator, is maintaining track of all
optical features. This tracking can be lost two ways: 1 by lack
of features, and 2 by an excessive rate of optical flow. We
ensure 1 by keeping a minimum number of visible features
in the direction of camera z, with a region constraint on S2.
The tracking of features is roughly symmetric about rotations
about the camera z axis, so we consider a feature to be in the
field of view if it is inside a conical region which is a circular
region on S2. To limit 2, we minimize ∇V V or V which
will minimize the angular and linear acceleration or velocity
respectively as seen in Equation 15.

C. Stereographic Coordinates For Sn

Let P ∈ Sn ⊂ Rn+1 be a point on the sphere. For an
arbitrary matrix R ∈ SO(n+ 1), we define a set of projective
coordinates with Re1 being the singular point on Sn. Let p ∈
Rn be the stereographic coordinates. If ei is a vector which
is all 0, except the ith element, which is 1, we can define a
chart ϕ with the functions:

ξ = p1Re2 + p2Re3 + ...pnRen+1 −Re1 (16)

P =
2

||p||2 + 1
ξ +Re1 (17)

The inverse ϕ can be shown to be:

P ′ =
P

1− P ·Re1
(18)

p = (P ′ ·Re2, P
′ ·Re3, ..., P

′ ·Ren+1) (19)

The maps (ϕ2)−1 ◦ ϕ1 : Rn → Rn can be computed with

ξ̂ =
2

||p||2 + 1
(p1e2 + p2e3 + ...+−e1) + e1 (20)

(ϕ2)−1 ◦ ϕ1)k(p) =
eTk+1R

T
2 R1ξ̂

1− eT1 RT2 R1ξ̂
(21)

1) Christoffel Symbols on Sn: To be able to calculate the
Christoffel symbols, we will use the standard Rn+1 metric
tensor which corresponds to a L2 norm. This tensor is shown
in Equation 2, and results in:

gij =

{
4

(1+||p||2)2 i = j

0 otherwise
(22)

The metric is independent of the SO(n) rotation in the
stereographic coordinates, which can be shown by seeing that
Equation 17 is linear in R and then cancels out during the
multiplication in Equation 2.

We can use Equation 6 to calculate symbols for the metric
induced by Rn+1 on the sphere. With stereographic coordi-
nates, these are:

Γkij =
2

(1 + ||p||2)
·


xk i 6= k and j 6= k and i = j

−xj i = k

−xi j = k

0 otherwise
(23)

We note that these symbols are independent of the value of
R. The proof of this is omitted for space, but the rotational
symmetry of the sphere shows that this should be the case. And
we can see that these symbols are torsion free (Γkij = Γkji).

D. Search on S2

To generate a grid on the sphere, we use the well known
geodesic polyhedron construction. We start with an icosahe-
dron and sub-divide each triangular face into n2 triangles and
then project the vertices to the unit sphere. If we then take
the dual of this shape by interchanging vertices with edges,
we end up with a graph which almost uniformly covers the
sphere and has the property that each node has 3 neighbors
everywhere on the sphere.

With a graph on the sphere, we can use A? with the geodesic
length representing the arc length between adjacent nodes. To
check whether or not a given node has enough features, we
need to calculate how many features are within view from
that point. To do this, we partition the features which are
between a minimum and maximum distance from the point
in R3 and then use the property of stereographic coordinates
in subsection IV-E.

Fig. 4: Example graph of nodes (red circles) and associated
edges (geodesic segments) on S2 based off the icosahedron.
Note how each node has exactly 3 edges.

E. Circles to Circles

It is known that a circle on S2 is a circle in stereographic
coordinates (Figure 5), with some center and a different radius.
Thus when we model our visual constraint with a cone, we
can transform all of the point into stereographic coordinates
and then check to see how many of them lie within a given
circle. Since this calculation needs to happen many times
for the corridor creation, calculating this in the stereographic
coordinates is more efficient then counting features in R3

We first need to find the transform between center of the
circle in the parameter space and center of the circle on the
sphere, expressed in the parameter space. These two quantities
are actually different except at the identity element.

Exploiting the symmetry when expressing points on a
sphere, we look at the point p expressed in polar coordinates
p = (r cos(θ), r sin(θ)) , the radius of the circle in coordinates
is ρ with the field of view being φ:

ρ =
(r2 + 1) sin φ

2

cos φ2 + 1 + r2(cos φ2 − 1)
(24)

7

We can also specify the center of this circle in the parameter
space in polar coordinates as p′ = (r′ cos(θ), r′ sin(θ))

r′ =
2r

cos φ2 + 1 + r2(cos φ2 − 1)
(25)

Fig. 5: A circle on a sphere S2 will be a circle in the parameter
space R2 when using stereographic coordinates. We use this
to efficiently determine whether or not a viewpoint has enough
features or not during the corridor construction.

V. TRAJECTORY GENERATION ON SO(3)

To generate trajectories on SO(3), we first need a graph.
With the work of [28], we can use a uniform grid on this
manifold using the Hopf fibration. This allows us to use the
existing graph we described on S2 and cross it with uniform
samples on S1. As long as the following equation holds for
nS1 samples on S1 and nS2 samples on S2 , the cross product
samples are close to uniform on SO(3).

π

nS1

=

√
π

nS2

(26)

To generate charts after a path is found on SO(3), we use
the exponential map because it can be used for all Lie groups
[9]. From a point on the path Rc, we can locally parameterize
SO(3) with the vector ξ ∈ R3.

R ∈ SO(3) = Rc exp

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 = Rc exp(ξ̂)

(27)
The chart transition function can be found by equating two
charts and rearranging:

ξ1 = log(R−1
1 R2 exp(ξ̂2))∨ (28)

Where ∨ is the inverse of the .̂ operator [5]. The derivative
of this transition function is omitted for space, but guarantees
continuity of angular velocity during the chart transition. This
is equivalent to saying the angular velocity in the world frame
is continuous. Since it has physical meaning, we can specify
that the cost functional is the angular velocity. This functional
has been formulated in the form of Equation 7 by [29].

In Figure 6, we show the results of this algorithm on a
simple example of reorienting an object. Plotting obstacles in
orientation space would clutter the view, but we can see the
effect of how the trajectory needs to change to get around a
blockage placed in the middle of what would otherwise be the
optimal path. In the obstacle free version, our method performs

Trajectory on SO(3) with Obstacles

Trajectory on SO(3) without Obstacles

Fig. 6: Trajectories generated on SO(3) using this method.
Orientations are visualized as a box with a red-blue-green
coordinate axis and time is visualized by translating the box
to the right as it rotates. The start is from identity and the
trajectory goes to a rotation which is rotated about the blue axis
by 90 degrees. In the obstacle free case, the optimal trajectory
rotates about this axis, which will produce the same result
as [19] or [1]. In the bottom example, we place an obstacle
in the middle of the obstacle free path, so the the optimized
trajectory rotates out of plane around it.

slower than the methods [19] or [1], because they provide a
closed form solution, but results in the same trajectory. These
methods however, cannot be used in the case with obstacles.

VI. EXPERIMENTAL RESULTS

For the hardware experiments, we have chosen an Ascend-
ing Technologies Pelican quadrotor with a payload of an Intel
Nuc i7, stereo cameras, IMU, and an Asus Xtion Pro depth
sensor. A Vicon motion capture system provides ground truth
and control feedback so we can safely test trajectories in which
the naive planner may cause poor estimator performance and
otherwise damage the robot. The control of the robot is based
off the one proposed in [15].

We have implemented the version of our algorithm on
R3 × S2 in C++, with ROS handling all of the interprocess
communication and python running some of the high level
control commands. Dynamic feasibility of the trajectory is
done using the time scaling method in [23]. The translation
of the trajectory in 3 dimensions, which the yaw being the
projection of the S2 part of the trajectory are converted into
real time control commands by [15]. The depth sensor was
used to build up a collision occupancy grid at the same time
as the vision cameras build up a map of visual features. During
the map creation phase, stereo visual inertial odometery was
used to provide more accurate ground truth locations of
features in the environment. The region of interest planned
with the S2 part of the state, is converted into a cropped
region of a wide angle lens camera image. This is to simulate a
hardware controlled gimbal in software, similar to the system
found in commercial platforms.

The trajectory generation done using our algorithm was
performed off-line on an Intel i7 3.4 GHz processor with
a single threaded implementation. The computation time is
bottlenecked by the graph search and corridor generation, but

8

in total was less than 30s for multiple sets of start and end
locations. Searching over a 5 dimensional space with A? takes
a while because of the large number of nodes in the graph and
that computing the collision on the spherical part of the state
requires checking all the features in the vision map at each
node expansion. We believe there are ways to improve the
computational performance of this step, but they are outside
the scope of this work since we are not targeting on-line
applications.

We used a monocular version of the Multi-State Constraint
Kalman Filter (MSCKF) [16] as a benchmark for the visual-
inertial odometry. We setup an environment with feature-poor
obstacles as shown in the video. We compare this trajectory
generation method to the one of [14], which does not take
into account that the obstacles have no features on them. This
is in contrast to our method, which we set to require at least
10 features in the field of view at all times. The performance
over several environments is shown in Figure 7, where the
distribution of our errors is to the left of that using the naive
method.

Fig. 7: Estimator performance summarized from 45 trials

When planning in the environment in the video, our algo-
rithm found a corridor consisting of 5 polyhedrons, which are
each 5 dimensional, these are hard to visualize, but we have
split them into their projections on the R3 and S2 part of the
state separately in Figure 8.

VII. LIMITATIONS OF APPROACH

As with any approach, there are situations where our
approach is not ideal. For systems where the state, cost and
constraints all live on Rn, this method simplifies, but the added
complexity of the differential geometric formulation would
likely hinder implementation. Using differential geometry to
formulate an optimization problem can be a potential pitfall
as it adds complexity if applied to the wrong problem. Also,
while all parameterizations of a manifold can work with this
approach, the obstacle avoidance is dependent on the param-
eterization. Therefore, a different choice of parameterization
can lead to poorer results.

Restriction to one homotopy class can produce sub optimal
results in environments where there are narrow paths which
place restrictions on dynamics. For example, a robot will
choose to take a narrow shortcut over a safer wider path
unless the search heuristic takes path clearance as part of its

Fig. 8: Corridor sections for R3 × S2 trajectory consisting
of 5 segments. The top row is the R3 representation of the
polyhedra plotted with a 3D perspective. The bottom two
rows are the S2 parts of the trajectory. The middle row is
the polyhedron in parameter space and the bottom row is
that polyhedron projected onto a sphere and drawn with a
3D perspective.

cost metric. In general, this method is beneficial when there
is sufficient room around the kinematically-feasible shortest
path for a dynamically feasible trajectory to be generated.
In situations where the kinematic planning problem is hard,
the trajectory generation will have similar performance to
following a kinematic path at slow speed.

When scaling to higher dimensional manifolds, the per-
formance of this methods depends on the sparsity of the
formulated optimization which is proportional to the number
of faces of the polyhedra. For higher dimensions, polyhedra
require more faces to approximate other bounds such as
quadratic surfaces and further study is needed to understand
which is a better representation. In addition, this method does
not solve issues with difficulty in finding a feasible path in high
dimensions which appear in applications such as navigating
redundant serial chain manipulators through narrow gaps.

VIII. CONCLUSION

We have proposed a trajectory optimization method on
Riemannian manifolds that is computed without equality con-
straints and that ensures the optimization never needs to project
back to the manifold. Using a collision map on the manifold,
we show how we can add collision constraints with convex
sub-approximation on a series of coordinate charts found by
our algorithm. We have then applied this method to SO(3) and
an example problem in robotics with planning a robots position
on R3 and camera view on S2 simultaneously. We show that
this method improves estimator performance of a monocular
visual-inertial system by generating smooth trajectories in
position and view direction.

REFERENCES

[1] Calin Belta and Vijay Kumar. Euclidean metrics for mo-
tion generation on SE (3). Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 2002.

9

[2] Alberto Bemporad and Manfred Morari. Predictive Con-
trol of Constrained Hybrid Systems. In Frank Allgwer
and Alex Zheng, editors, Nonlinear Model Predictive
Control. Birkhuser Basel, 2000.

[3] Francesco Bullo and Kevin M. Lynch. Kinematic con-
trollability and decoupled trajectory planning for under-
actuated mechanical systems. May 2001.

[4] Shengyong Chen, Youfu Li, and Ngai Ming Kwok.
Active vision in robotic systems: A survey of recent
developments. ISRR 2011, September 2011.

[5] Gregory S Chirikjian. Stochastic Models, Information
Theory, and Lie Groups, Volume 2: Analytic Methods
and Modern Applications, volume 2. Springer Science
& Business Media, 2011.

[6] Gabriele Costante, Christian Forster, Jeffrey Delmerico,
Paolo Valigi, and Davide Scaramuzza. Perception-aware
path planning. arXiv, 2016. URL https://arxiv.org/abs/
1605.04151.

[7] Robin Deits and Russ Tedrake. Efficient Mixed-Integer
Planning for UAVs in Cluttered Environments. In 2015
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 42–49, 2015.

[8] Melvin E. Flores. Real-time trajectory generation for
constrained nonlinear dynamical systems using non-
uniform rational B-spline basis functions. PhD thesis,
2007.

[9] Jean Gallier and Jocelyn Quaintance. Notes on differ-
ential geometry and Lie groups. Springer, 2017. URL
http://www.seas.upenn.edu/∼jean/diffgeom.pdf.

[10] Fei Gao and Shaojie Shen. Online quadrotor trajectory
generation and autonomous navigation on point clouds.
In SSRR. IEEE, 2016.

[11] Lonard Jaillet and Josep M. Porta. Asymptotically-
optimal path planning on manifolds. Robotics: Science
and Systems VIII, page 145, 2013.

[12] Sertac Karaman, Matthew R. Walter, Alejandro Perez,
Emilio Frazzoli, and Seth Teller. Anytime motion plan-
ning using the RRT*. In ICRA. IEEE, 2011.

[13] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, 2006.

[14] Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun,
Subhrajit Bhattacharya, Camillo J. Taylor, and Vijay
Kumar. Planning Dynamically Feasible Trajectories for
Quadrotors Using Safe Flight Corridors in 3-D Complex
Environments. IEEE Robotics and Automation Letters, 2
(3):1688–1695, 2017.

[15] D. Mellinger and V. Kumar. Minimum Snap Trajectory
Generation and Control for Quadrotors. In ICRA, May
2011.

[16] A.I. Mourikis and S.I. Roumeliotis. A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navi-
gation. In ICRA 2007, April 2007.

[17] Jorge Nocedal and Stephen J. Wright. Numerical opti-
mization. Springer series in operations research. Springer,
2006.

[18] Helen Oleynikova, Michael Burri, Zachary Taylor, Juan
Nieto, Roland Siegwart, and Enric Galceran. Continuous-
time trajectory optimization for online UAV replanning.

In 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 5332–5339.
IEEE, 2016.

[19] F. C. Park and B. Ravani. Bezier Curves on Riemannian
Manifolds and Lie Groups witli Kinematics Applications.
1995.

[20] Tomasz Popiel and Lyle Noakes. Bzier curves and
C2 interpolation in Riemannian manifolds. Journal of
Approximation Theory, October 2007.

[21] James A. Preiss, Karol Hausman, Gaurav S. Sukhatme,
and Stephan Weiss. Trajectory Optimization for Self-
Calibration and Navigation. In Robotics: Science and
Systems (RSS), 2017.

[22] William H. Press, editor. Numerical recipes in C: the
art of scientific computing. Cambridge University Press,
1992.

[23] Charles Richter, Adam Bry, and Nicholas Roy. Polyno-
mial trajectory planning for aggressive quadrotor flight
in dense indoor environments. In The International
Symposium on Robotics Research (ISRR), 2013.

[24] Seyed Abbas Sadat, Kyle Chutskoff, Damir Jungic, Jens
Wawerla, and Richard Vaughan. Feature-rich path plan-
ning for robust navigation of MAVs with mono-SLAM.
In ICRA. IEEE, 2014.

[25] John Schulman, Yan Duan, Jonathan Ho, Alex Lee,
Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil,
Ken Goldberg, and Pieter Abbeel. Motion planning
with sequential convex optimization and convex collision
checking. IJRR, 2014.

[26] Alexander Shkolnik and Russ Tedrake. Path planning
in 1000+ dimensions using a task-space Voronoi bias.
In 2009 IEEE International Conference on Robotics and
Automation, pages 2061–2067. IEEE, 2009.

[27] Michael Watterson, Trey Smith, and Vijay Kumar.
Smooth trajectory generation on SE (3) for a free flying
space robot. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5459–
5466. IEEE, 2016.

[28] Anna Yershova, Swati Jain, Steven M. Lavalle, and
Julie C. Mitchell. Generating uniform incremental grids
on SO (3) using the Hopf fibration. IJRR, 2010.

[29] M. Zefran, C. Croke, and V. Kumar. Choice of Rie-
mannian Metrics for Rigid Body Kinematics. In ASME
Design Technical Conference, August 1996.

[30] G. Zhang, S. Ferrari, and M. Qian. An Information
Roadmap Method for Robotic Sensor Path Planning.
Journal of Intelligent and Robotic Systems, September
2009.

[31] Zhijie Zhu, Edward Schmerling, and Marco Pavone. A
convex optimization approach to smooth trajectories for
motion planning with car-like robots. In CDC. IEEE,
2015.

[32] Matthew Zucker, Nathan Ratliff, Anca Dragan, Mihail
Pivtoraiko, Matthew Klingensmith, Christopher Dellin,
J. Andrew (Drew) Bagnell, and Siddhartha Srinivasa.
CHOMP: Covariant Hamiltonian Optimization for Mo-
tion Planning. International Journal of Robotics Re-
search, May 2013.

https://arxiv.org/abs/1605.04151
https://arxiv.org/abs/1605.04151
http://www.seas.upenn.edu/~jean/diffgeom.pdf

	Introduction
	Preliminaries
	Manifold Problem Formulation
	Algorithm Overview
	Path Finding on Manifolds
	Safe Corridor on Manifolds
	Optimization on manifold
	Optimization method

	Field of View Constrained Trajectory Optimization Details
	Vision Model
	Field of View Formulation
	Stereographic Coordinates For Sn
	Christoffel Symbols on Sn

	Search on S2
	Circles to Circles

	Trajectory Generation on SO(3)
	Experimental results
	Limitations of approach
	Conclusion

