
Rover Science Autonomy: Probabilistic Planning
for Science-Aware Exploration

Thesis Proposal
Trey Smith

Carnegie Mellon University

Abstract

Next-generation Mars rovers will have the ability to autonomously nav-
igate for distances of kilometers. At these scales, a day’s traverse takes the
rover over its local horizon, into regions where only low-resolution orbital
data is available. This improved navigation provides both an opportunity
and a challenge: we need new techniques for performing effective science
while over the horizon and out of contact.

This work deals withscience autonomy(SA), the ability of the rover to
reason about science goals and the science data it collects in order to make
more effective exploration decisions. The proposed work has two major
components.

First, we will define a set of rover SA operational modes, and assist
in developing and field testing a system that implements these modes. We
will create an overall architecture for the SA system, and develop the plan-
ning component in that architecture. Research questions include: How do
we define the SA operational modes? How useful is each mode, and un-
der what circumstances should it be used? What kind of planner is most
appropriate for an SA system?

Second, we will extend partially observable Markov decision process
(POMDP) planning algorithms in ways that bridge the gap between the
current state-of-art and the planning requirements of the SA domain. POMDP
planners can generate high-quality plans that take into account action and
sensing uncertainty, but realistic problems in the SA domain are far be-
yond the abilities of existing algorithms. Research questions include: Can
heuristic search be combined with efficient representations of the POMDP
value function to speed planning? Can we improve scalability when most
of the world state is observable? Can we effectively use continuous plan-
ning techniques in the POMDP context?

1



1 Introduction

Next-generation Mars rovers will have the ability to autonomously navigate for dis-
tances of kilometers. At these scales, a day’s traverse takes the rover over its local hori-
zon, into regions where only low-resolution orbital data is available. This improved
navigation provides both an opportunity and a challenge: we need new techniques for
performing effective science while over the horizon and out of contact.

This work deals withscience autonomy(SA), the ability of the rover to reason
about science goals and the science data it collects in order to make more effective
exploration decisions.

SA extends the set of operational modes available to the science team. Currently
available operational modes are relatively simple. Examples includedirected sampling,
in which the rover visits specific local targets designated by the science team, and
periodic sampling, in which the rover takes periodic samples while executing a traverse
or coverage pattern.

But SA technology allows us to implement new modes that are more effective in
over-the-horizon situations. For example, in thescience on the flymode, the rover
watches for potential science targets during a long traverse. It uses sampling prefer-
ences provided by the science team to decide whether it is worthwhile to delay its tra-
verse in order to perform follow-up observations, such as taking a spectrometer reading
or visiting the target and using contact sensors.

In the intelligent site surveymode, the rover attempts to provide preliminary data
about a new site to the science team. It moves around the site using an exploration strat-
egy that balances coverage with selective sampling based on scientist preferences. This
approach, taking advantage of the rover’s mobility and full sensor suite, is intended to
give the science team a better early understanding of the site, and allow them to plan
more useful follow-up observations.

We should make it clear that the goal in SA is not to take control of the rover from
the science team. Rather, we are providing them with new modes of interaction. In
addition to the tightly scripted commands the science team currently has, they would
gain the ability to specify more flexible commands such as, “Take microscopic images
of carbonate rocks whenever you see them.” The science team can begin to think of the
rover as a robotic graduate student [Gulick et al., 2001] that interprets their commands
intelligently, and can take some initiative when exploring new areas.

Current work in SA is for the most part focused on what we view as foundational
capabilities. One capability is data understanding, such as image analysis to iden-
tify rocks and sedimentary layers or spectral analysis that characterizes mineral types
[Gazis and Roush, 2001]. Another is sensor placement, for example, accurately driv-
ing to a particular rock identified from several meters away [Maimone et al., 1999], or
finding a flat surface on a rock and aligning a sensor with it in order to obtain a clean
reading [Pedersen et al., 2003a].

The first part of our proposed work builds on these foundational capabilities to de-
velop (1) an overall system architecture that supports the kind of SA operational modes
described earlier, and (2) the planning module for that system [Smith, 2003]. We are
not the first to look at the architecture and planning module. For example, the ongoing
OASIS project at JPL has done some early work connecting science data understand-

2



ing into a rover planning system. Their system was tested onboard a rover in the JPL
Mars Yard, and was also used to post-process data from field tests [Estlin et al., 2003].
The proposed work is distinguished by its greater emphasis on long-distance traverses,
using what we call a high-mobility operations strategy. We will address these research
questions:

• Problem definition:What SA operational modes are useful to scientists, tech-
nically within reach, and applicable to our mission profile? What are the per-
formance criteria for these operational modes? Can we develop objective and
measurable performance metrics?

• System design and characterization:What system architecture is most appro-
priate? In field testing, how useful does each operational mode turn out to be?
Under what mission circumstances should each mode be used?

• Planner design and characterization:What requirements do different system ar-
chitectures place on the planning module? What aspects of planner performance
are most relevant to overall system performance? How well do different planning
models and algorithms perform on this problem?

The second part of our proposed work is to extend partially observable Markov de-
cision process (POMDP) planning algorithms in ways that bridge the gap between the
current state-of-art and the planning requirements of the SA domain. POMDP planners
can generate high-quality plans that take into account action and sensing uncertainty,
but realistic problems in the SA domain are far beyond existing algorithms.

We believe that SA is a particularly interesting application for POMDP planning
because of the importance ofsensor planning, i.e., modeling the information the rover
expects to gain from future sensor readings and the effect it will have on subsequent
rover decisions. A high-quality SA plan must specify when to invest effort in prelim-
inary sensor readings (like long-range spectrometer samples) that allow the rover to
subsequently decide whether costly follow-up observations (like visiting the target and
applying contact sensors) are worthwhile.

Other researchers have studied probabilistic planning techniques for the SA prob-
lem. [Pedersen et al., 2001] looked at planning sensing actions to enable classification
of rock mineral types and meteorites. Prioritized coverage planning for rover explo-
ration was studied in [Moorehead, 2001]. But the proposed work will be the first to
apply POMDP planning to this domain.

We should make it clear that we may not be able to field test our POMDP planner
onboard a rover. Field testing would require not only that we solve challenging issues
in POMDP planning, but also that the software quickly reaches a high level of maturity.
Therefore, we plan to test our POMDP planning technology primarily in simulation.
We are also interested in ways to inject a few POMDP model elements into an existing
planning model, which could support an incremental migration of POMDP capability
into the onboard system.

POMDP models have not yet been widely deployed, largely because exact POMDP
planning is enormously intractable. Early success stories of approximate approaches

3



include control of autonomous helicopters [Bagnell and Schneider, 2001] and navi-
gating indoor environments without getting lost [Simmons and Koenig, 1995]. Ex-
tending POMDP planning to larger problems is currently a major area of research
[Aberdeen, 2002]. We will address these research questions:

• Heuristic search:Can we combine heuristic search with efficient value function
representations to speed up planning? What heuristics are appropriate? Can we
make theoretical performance guarantees about the resulting algorithms?

• Factored state:Can POMDP planning scale nearly as well as MDP planning
when the state is factored into state elements, and most elements are observable?
Can we improve efficient data structures that leverage factored state?

• Continuous planning:Can we speed up POMDP planning by interleaving plan-
ning and execution? Under what circumstances can the planner save effort by
executing part of its plan and gathering the resulting information before making
long-term decisions?

The contributions of this thesis will come in two areas. First, we will develop an
overall architecture and planning module for one of the first rover SA systems. Our
work will be distinguished from comparable projects by the need to generate daily
plans that include several kilometers of traverse, and by the primary mission goal,
which is biology as opposed to geology (implying a different sensor suite). Second,
we will extend POMDP planning techniques and apply them to the SA domain for the
first time. We hope that the probabilistic models and algorithms we develop will both
improve the quality of SA plans and generalize to other planning domains.

2 Background and Related Work

2.1 Science Autonomy

Several research groups have developed science autonomy systems. Among the most
relevant and mature projects is OASIS (Onboard Autonomous Science Investigation
System) at JPL [Estlin et al., 2003]. Like the proposed work, OASIS is an onboard
system for rovers that includes a continuous planner that can react to science data as it
is collected. OASIS has dealt with issues such as robust execution [Estlin et al., 2002]
and interdependent goals (e.g. a conditional reward for a camera image if it provides
context for a valuable spectrometer reading) [Estlin and Gaines, 2002]. The OASIS
system has undergone early testing on the Rocky 7 and 8 rovers in the JPL Mars Yard.

Our long-term goals are broadly similar to those of the OASIS project, but our work
is distinguished in that we will support a different mission profile: our rover will gen-
erate day-long plans that include several kilometers of traverse, and its primary goal is
biology as opposed to geology (implying a different sensor suite). The different mis-
sion profile motivates parts of our technical approach: for instance, our planner will
need to integrate with existing long-range navigation technology, and our SA opera-
tional modes will need to fit into a high-mobility operations strategy.

4



The ASE (Autonomous Sciencecraft Experiment) at JPL is currently in the process
of deploying science autonomy onboard the EO-1 (Earth Orbiter 1) satellite during its
extended mission [Chien et al., 2003].1 There is considerable overlap between ASE
and OASIS in terms of personnel and underlying software systems. The ASE architec-
ture supports onboard continuous planning in reaction to incoming science data (e.g.
fires, flooding, or volcanic eruptions). As of November 2003, the system was partially
deployed, and the science autonomy loop had yet to be closed onboard. Compared to
ASE, the rover experiments for the proposed work motivate a planner with different ca-
pabilities: rover operations require fewer parallel activities and looser time constraints,
but more reasoning about uncertainty.

Researchers at NASA ARC have demonstrated advanced planning and execution
technology onboard the K9 rover [Pedersen et al., 2003b]. Their system uses proba-
bilistic planning, and their technique of heuristic search using plan graphs to estimate
utility may be applicable to our problem [Dearden et al., 2003]. In contrast to our pro-
posed POMDP planning techniques, the non-determinism in their model is limited to
resource usage; decision-making based on science data collected by the rover is not
considered.

The RAMS project (Robotic Antarctic Meteorite Search) at CMU demonstrated
detection and classification of meteorites onboard the Nomad rover in the Patriot Hills
of Antarctica [Wagner et al., 2001]. The onboard classifier was probabilistic, and the
RAMS science autonomy system used a simple form of information-gain planning, pri-
oritizing actions that reduce the entropy of classification [Pedersen et al., 2001]. Com-
pared to RAMS, the proposed system will support more complex daily plans, a broader
set of science goals, and more Mars-relevant operations.

One of the SA operational modes we will develop is intelligent site survey, applied
to sites (on the scale of tens of meters) identified from orbital imagery. We anticipate
that the sites we survey will have simple shapes and only scattered obstacles, so that we
should be able to use pre-computed coverage patterns such as straight rows or spirals
[Shillcutt, 2000]. We do not expect to need more complex coverage algorithms that ac-
commodate structured obstacles or regions with more complex shapes [Choset, 2001].

The more challenging part of the intelligent site survey mode is to use incoming
science data during the survey to prioritize time spent on different targets. Prioritized
coverage planning for rover exploration was studied in [Moorehead, 2001]. Compared
with the proposed work, that planner did not model the outcomes of future observa-
tions, and considered only what path the rover should follow, not what sensor readings
to take.

Solar-powered rovers are more effective when controlled by power-cognizant tra-
verse planning [Shillcutt, 2000]. The TEMPEST planner returns optimal plans accord-
ing to its model of power generation and consumption, and supports quick replanning
[Tompkins et al., 2002]. The planning module in the proposed SA architecture can
work with TEMPEST to provide high-quality plans that take into account both science
priorities and resource constraints.

1ASE was also scheduled to be included in the Three Corner-Sat imaging constellation (a multi-university
effort, originally scheduled for launch on the Space Shuttle in 2003, now indefinitely postponed), and the
Air Force TechSat-21 radar constellation (originally scheduled for launch in 2004, now cancelled).

5



2.2 Probabilistic Planning

Classical planning approaches assume that the planning agent has full knowledge of the
world and can predict the results of its actions with certainty. The real world is seldom
so kind. Robotics as a field has recently invested a great deal of effort in probabilistic
planning techniques that relax the classical planning assumptions. These techniques
can work robustly on robots with imperfect sensors and actuators [cite somebodies].

This section discusses a series of probabilistic planning formalisms, building up to
the very general POMDP model that we intend to use for the proposed work.

2.2.1 The Markov Process

A Markov process is a stochastic process with the special property that there is no
“unmodeled” state: all of the information needed to make the best possible prediction
of the future evolution of the process is encapsulated in the current state.

A Markov process is defined by a tuple(S, T, s0), whereS is a finite set of states,
T is the stochastic transition function, ands0 ∈ S is the initial state. Definest to be
the state of the process at timet. The process evolves stochastically according to the
transition function:

Pr(st+1 = s′ | st = s) = T (s, s′)

What makes this a Markov process is that if one wants to predict the next statest+1

and one knows the current statest, then knowing the historys0, . . . , st−1 provides no
additional information. All of the information is encapsulated in the current state.

2.2.2 The Markov Decision Process (MDP)

An MDP is a planning model that describes an agent acting in a Markovian world.
In addition to the underlying Markov process, the MDP includes an agent with goals
(expressed as a reward function) and a means of influencing the evolution of the process
[Howard, 1960].

An MDP is a tuple(S,A, T, R, γ, s0), whereS is a finite set of states,A is a finite
set of actions,T is the stochastic transition function,R is the reward function,γ < 1
is the discount factor, ands0 ∈ S is the initial state. Definest andat to be the state of
the process and the agent’s choice of action, respectively, at timet. The agent’s action
now influences the evolution of the process according to

Pr(st+1 = s′ | st = s, at = a) = T (s, a, s′).

The agent’s reward at each timet is given byR(st, at). Since the process is Markov,
history provides no extra information and the agent can act optimally by choosingat

solely on the basis ofst. We say in this case that the agent has a policyπ : S → A,
and it chooses its actions such thatat = π(st). The long-term (expected discounted)
reward of a policyπ starting from states is defined to be

Jπ(s) = E

[∑
t

γtR(st, at) | π, s0 = s

]
.

6



Jπ is also called thevalue functionfor π. The agent’s goal is to choose the optimal
policy π∗:

π∗ = argmax
π

Jπ(s0).

It is also useful to define theregretof a policyπ starting froms:

regret(π, s) = Jπ∗
(s)− Jπ(s).

The usual goal of approximate MDP planning is to return a policyπ with smallregret(π, s0).
Value iteration is a standard approach to solving MDPs. The optimal policyπ∗ is

derived by first calculating its value functionJπ∗
. In the case of the discounted (γ < 1)

MDP formulation that we use, the optimal value function is the unique fixed point of
the following recursion, called the Bellman equation [Bellman, 1957]:

Jπ∗
(s) = max

a

[
R(s, a) +

∑
s′

T (s, a, s′)Jπ∗
(s′)

]
.

This recursion is globally convergent.
The MDP planning model can represent uncertainty in the outcomes of actions, but

it assumes that the world is fully observable: the agent always learns the outcome of an
action with full certainty after it is randomly determined. Thus, the MDP model cannot
represent hidden state or noisy sensing.

2.2.3 The Partially Observable Markov Decision Process (POMDP)

A POMDP generalizes the MDP notion of uncertainty [Sondik, 1971,
Cassandra et al., 1994]. The agent is not assumed to have full certainty about
the initial world state. At each time step, the agent selects an action that has some
stochastic outcome. The agent cannot observe the outcome directly, but instead
receives a noisy observation.

The sequence of events can be viewed as a tree structure (fig. 2.1). Nodes of the
tree are points where the agent must make a decision. Each node has a corresponding
beliefb that the agent would have if it reached that node. The root node is labeled with
the initial belief,b0. Starting from nodeb, selecting actiona, and receiving observation
o, the agent proceeds to a new beliefτ(b, a, o), corresponding to one of the children of
b in the tree structure.

The POMDP is defined by a tuple〈S,A,O, T, O,R, γ, b0〉, whereS is the set of
states,A the set of actions,O is the set of observations,T is the stochastic transition
function,O is the stochastic observation function,R is the reward function,γ < 1 is
the discount factor, andb0 is the agent’s belief about the initial state. Letst, at, andot

denote, respectively, the state, action, and observation at timet. Then we define

b0(s) = Pr(s0 = s)
O(s, a, o) = Pr(ot = o | st+1 = s, at = a).

7



o1 on

a1 naa2

o2

t=0

1t=

b0

Figure 2.1: POMDP tree structure.

R andT are defined as in the MDP case. In the POMDP model, at timet+1, the agent
does not knowst+1, but does know the initial beliefb0, and the history of actions and
observations up to timet.

The key to solving POMDPs is to realize that the agent can act optimally on its
history information by folding the most recent action and observation into its current
belief at every step. The belief is recursively updated as follows:

bt+1 = τ(bt, at, ot),

If b′ = τ(b, a, o), then

b′(s′) = ηO(s′, a, o)
∑

s

T (s, a, s′)b(s),

whereη is a normalizing constant. The agent now specifies its policyπ by giving an
actionπ(b) to follow given any current beliefb.

In taking this step, we have transformed the POMDP into abelief-space MDP. A
“state” in the belief-space MDP is a belief of the POMDP. An “outcome” of an action
is the result of folding the action and its resulting observation into the current belief.

Value iteration can be used to solve the belief-space MDP as with any other MDP,
but unfortunately, the Bellman recursion must now be evaluated not over the finite set
of states, but over the continuous space of beliefs. The challenges of solving POMDPs
are discussed in the next section.

2.2.4 Solving POMDPs

Solving POMDPs exactly is known to be intractable. The infinite-horizon case is
EXPTIME-hard with boolean rewards, and is not known to be decidable for general re-
wards [Littman, 1996]. Even with finite horizons, the general-reward case is PSPACE-
hard.

A discussion of complexity is beyond the scope of this proposal, but we can pro-
vide some brief intuition as to why POMDPs are so difficult. First, the search tree
for a POMDP with|A| actions and|O| observations has an overall branching fac-
tor of |A||O|, which is often very large. This is also called thecurse of history
[Pineau et al., 2003]: each possible history of actions and observations leads to a node
of the search tree, and a policy must choose the correct action given any of these histo-
ries.

8



Second, one can consider dynamic programming (DP) approaches, such as value it-
eration. Using DP, computational effort depends not on the number of nodes in the tree,
but on the number of unique beliefs. Unfortunately, POMDP beliefs are drawn from
an |S|-dimensional continuous space. There is, however, some additional structure:
beliefs that are close to each other have similar values when following the same policy,
so we can develop an approximate policy by covering the belief space at some resolu-
tion. But then thecurse of dimensionalityarises [Kaelbling et al., 1998]: the number of
points required to cover the belief space at a given resolution increases exponentially
with its dimensionality|S|.

Sondik first introduced POMDPs in the operations research community, and pro-
vided the first POMDP value iteration algorithm, called One-Pass [Sondik, 1971].
Since then, a variety of other exact and approximate solution approaches have
been suggested. Some well-known techniques include POMDP variants of MDP
policy iteration [Hansen, 1998], parameterizing the policy and using gradient as-
cent [Baxter and Bartlett, 2000], and a particle filter approach that approximates
the belief state using Monte Carlo sampling to solve continuous-state POMDPs
[Thrun, 2000]. We refer the reader to a survey of POMDP approximation techniques
[Aberdeen, 2002].

Perhaps the best-known class of POMDP algorithms are exact value iteration tech-
niques that follow on Sondik’s seminal work, such as Witness [Littman, 1994] and In-
cremental Pruning [Cassandra et al., 1997]. Our own research to date is part of a newer
group of algorithms that are inspired by the exact value iteration approach, but that pro-
vide speedup using approximate or local value iteration updates. Example algorithms
in this class include PBDP [Zhang and Zhang, 2001] and PBVI [Pineau et al., 2003].
§4.5 provides a direct comparison of prior work with our preliminary results.

Because of the intractability of exact approaches, POMDPs have not yet been
widely deployed. Some early success stories of approximate approaches include con-
trol of autonomous helicopters [Bagnell and Schneider, 2001] and navigating indoor
environments without getting lost [Simmons and Koenig, 1995].

3 Technical Approach

3.1 Operations Scenario

Our fundamental goal in developing SA is improving the efficiency of rover science.
For any given operation, this means improving the trade-off between resources invested
(time, energy, bandwidth, operator attention), and the usefulness of the returned data.

A current-generation Mars rover can move tens of meters per day. Given its con-
strained mobility, the science team can make efficient use of the rover by giving it
specific targets to sample based on data from previous downlinks. But future Mars
rovers will be able to move over distances of kilometers and visit multiple sites each
day. It will become more important to make efficient use of the rover when it is over
the horizon, outside areas visible from the previous day’s downlink.

Expanded rover mobility has become technically feasible only recently, and oper-
ations strategies have not yet fully adapted. In some rover field tests, the science team

9



has underused the mobility of the rover [Cabrol et al., 2001]. Nonetheless, a straight-
forward operations approach is emerging, which we callbaseline high-mobility opera-
tions. Using this approach, the science team selects interesting sites in orbital imagery
and can direct the rover to travel long distances and visit multiple sites per day. The
rover’s time is split between the following operational modes:

• Directed sampling:The science team gives the rover specific local targets based
on data from previous downlinks.

• Periodic traverse sampling:While traveling between interesting sites, the rover
takes periodic samples.

• Periodic site survey:When the rover reaches an interesting site, it follows a
coverage pattern and takes periodic samples. This data constitutes a preliminary
survey, and the science team can follow up with directed sampling as necessary.

Our proposal for structuring SA is to add new modes that extend baseline high-
mobility operations. Some modes under consideration are the following (in order from
least to most advanced):

• Science on the fly:While traveling between interesting sites, the rover watches
for potential science targets. It uses sampling preferences provided by the sci-
ence team to decide whether it is worthwhile to delay its traverse in order to
perform follow-up observations, such as taking a spectrometer reading or visit-
ing the target and using contact sensors.

• Intelligent site survey:When the rover reaches an interesting site, it moves
around the site using an exploration strategy that balances coverage with selec-
tive sampling based on scientist preferences. This data constitutes a preliminary
survey, and the science team can follow up with directed sampling as necessary.

• Science-aware path following:The rover follows a path defined by science fea-
tures. Examples include the margin of a dry riverbed or crater, or evaporite
deposits that mark an ancient shoreline.

• Science-aware region mapping:The rover identifies areas with uniform science
properties and attempts to find their boundaries, in order to determine extent and
generate a map. Example areas are geological units and habitats (defined by the
presence or absence of particular organisms).

In order to decide where to focus our development effort, we can rank each mode
on several criteria:

1. Efficiency enhancement:It should provide more useful science data than the
comparable baseline strategy given the same resource investment (in terms of
energy, time, bandwidth, and operator attention).

2. Broad applicability: It should be applicable under circumstances that are com-
monly encountered in mission operations.

10



3. Ease of migration:It should not be a “disruptive technology”. It should integrate
easily with existing systems and require minimal retraining for the science team.

4. Testability:There should be clear performance criteria, and it should be straight-
forward to compare performance with the baseline strategy.

5. Feasibility: It should be technically feasible to develop.

We believe that all four of the operational modes described earlier have good po-
tential to enhance efficiency and be broadly applicable. (Although this is difficult to
determinea priori and would best be analyzed through tests in the field.)

However, science on the fly and intelligent site survey have a clear advantage in
terms of ease of migration. They are essentially drop-in replacements for periodic tra-
verse sampling and periodic site survey. The science team can specify daily activities
just as they would in the baseline strategy, then “flip the switch” to use SA operational
modes where appropriate. (Of course, there is additional effort, such as specifying
sampling preferences, which is discussed later.) The fact that these modes have corre-
sponding baseline modes also improves testability. We can use existing performance
metrics for the baseline modes, and easily compare results. Because of these factors,
we will limit the scope of the proposed work to the first two SA modes.

The remainder of the technical approach section addresses the final criterion of
feasibility. We argue that an implementation of the first two SA modes is feasible by
providing a preliminary SA system design that includes an overall architecture and a
design for the planning module.

3.2 System Architecture

In developing an architecture for our SA system, we started with a standard three-
layer autonomy architecture [Firby, 1989], and made extensions where necessary to
provide additional functionality. The architecture is shown in fig. 3.1. The light-
colored planning modules will be developed as part of the proposed work; the other
modules either already exist, or will be developed by our colleagues in parallel with
the proposed work.

The functional layer, executive, and planner make up the three-layer autonomy ar-
chitecture. As we move through the layers from bottom to top, the reasoning involved
becomes more abstract and the reaction time becomes longer. The functional layer
consists primarily of fast reactive behaviors such as low-level control loops. The ex-
ecutive executes a plan by enabling and disabling functional layer behaviors. It also
keeps track of system state and reacts to fault conditions. The planner is responsible
for generating a plan to achieve system goals and updating the plan based on requests
from the executive. The three-layer architecture is commonly used because it provides
a balance between reactivity and high-level reasoning [Bonasso, 1991].

In order to support SA operations, we have made several additions to the three-
layer architecture. The first is the science observer, which is responsible for monitor-
ing incoming science data and detecting and classifying potential targets for follow-up
sampling. It forwards this information to the science planner. Because of its reac-
tive nature, one might consider the science observer to be part of the functional layer.

11



functional
layer

environment

executive

planner

science
observer

off-board onboard

science
interface

off-board
planner

domain
planners

Figure 3.1: Science autonomy system architecture.

Based on the usual constraints of the three-layer architecture, this would mean that in-
formation from the science observer should be channeled through the executive. But
we argue that the science observer is a special case.

Normally the planner is invoked by the executive in what we would call asyn-
chronousmanner. The executive requests a plan update at the start of a system run, or
at particular points in execution: for example, when a token in the plan is completed
with a particular status (success/failure), or because the update was scheduled as part
of the plan. In contrast, the science observer runs in the background throughout exe-
cution, and can detect a potential science target at any time. Thus, it should have the
ability to makeasynchronousrequests to update the plan based on its new information.
Channeling this information through the executive may not be appropriate.

Another addition to the architecture is calling out the existence of domain plan-
ners as part of the planning layer. Planning for rover operations is such a com-
plex undertaking that it is infeasible to start our planning module development from
scratch. Thus, the planner we develop needs to integrate with existing technology. In
particular, we will interact with systems for local navigation based on rover sensing
[Urmson et al., 2002] and resource-cognizant long-range navigation based on satellite
terrain models [Tompkins et al., 2004].

Finally, as part of the overall SA problem, we must consider how the science team
commands the rover. The off-board portion of our architecture includes a science in-
terface and off-board planner. The science interface allows the science team to specify
explicit goals such as sites to visit and targets for directed sampling, as well as implicit
goals, such as sampling preferences for the SA operational modes. The off-board plan-
ner is essentially a copy of the onboard planner. It is used by the science team to predict
how rover activities will proceed based on the goals they have specified. Using this off-

12



board analysis, the team can interactively tune their goals until they are satisfied with
the predicted results.

3.3 Sampling Preferences and the Science Observer

A key issue in SA system development is (1) how to represent scientist sampling pref-
erences, and (2) how the science observer can extract information that is relevant to
those preferences.

Much early work in rover science data understanding focused onkey signatures
[Gazis and Roush, 2001]. The idea is that the science team knows roughly what to
expect in an area, and has high-value science targets in mind that match a particular
signature: for example, they might want to look for carbonate deposits or vesicular
rocks that indicate volcanic activity.

The key signature approach, although often useful, has some limitations. First, it
assumes that the science team knows what to expect in an area—but the most interest-
ing areas to explore are precisely the ones that are most surprising. In these areas, a
wealth of interesting features may be present, but none that match any of the key signa-
tures. Second, the approach introduces bias into the returned data. If the key signatures
cause the rover to preferentially seek out carbonates, the science team may develop a
falsely inflated sense of their frequency in an area, missing other features and leading
to an incorrect understanding of the site.

Because of the limitations of the key signature approach, some extensions have
been proposed [Castaño et al., 2003]. These extensions include:

• Anomaly detection:Preferentially sampling features that are unlike any seen
previously.

• Representative sampling:Cataloging all of the feature types present in an area
and ensuring that at least one feature of each type is sampled. (Returning a
frequency distribution over the various feature types is also helpful.)

These approaches complement key signatures in that they remain useful when encoun-
tering unexpected features, and they help to avoid missing important features due to
selective bias.

It remains to specify how the science observer can provide information that is rele-
vant to scientist preferences. Although development of the science observer is beyond
the scope of the proposed work, we briefly discuss this issue because it is important to
the feasibility of the overall system.

The first step in the science observer’s analysis is to detect features and measure
a set of characteristics for each feature (such as size, albedo, vesicularity, spectral el-
ements, etc.). Considerable prior work in image and spectral analysis indicates that
reasonably effective automatic detection and measurement is feasible, though not yet
close to human standards [Gulick et al., 2000].

We must still explain how the measured characteristics of a feature can be related
to sampling preferences in order to determine if follow-up observations are needed.
With the key signature approach, the science observer needs to classify features only

13



according to whether they match the pre-specified signatures. Some straightforward
approaches include:

• Manual tuning: An exemplar feature for each key signature is selected, and
features within a particular distance of the exemplar in characteristic space are
said to match the key signature. The distance threshold along each characteristic
dimension is manually tuned. This is the easiest approach to implement. A
downside is that adding a new key signature takes considerable time and may
require the science team to consult an imaging or spectral analysis expert.

• Off-line supervised learning:The science team codes positive and negative ex-
amples of features according to whether they match the signature. The examples
are used to train a classifier. This approach is simpler, but still somewhat labor-
intensive.

Anomaly detection and representative sampling are more difficult: in order to sup-
port these preferences, the rover must make online updates to its classifier so that it
takes into account new features [Estlin et al., 1999]. With this in mind, we propose that
the science observer’s classifier should use unsupervised Bayesian clustering. Bayesian
clustering is a familiar tool for scientific data analysis [Cheeseman and Stutz, 1996],
and since it models classification uncertainty probabilistically, it can provide useful
additional information for POMDP planning.

The clustering algorithm returns a maximum probability posterior model of the ob-
served features that specifies (1) a set of clusters, and (2) for each feature, a probability
distribution that states how likely it is to be part of each cluster. Within this framework,
anomalous features are those that are not well-explained by any cluster. Representative
sampling can be accomplished by sampling one feature from each cluster.

We further propose that the science team can select automatically generated clusters
to use as key signatures. This avoids manually tuning or training a signature classifier.
Also, the automatic clustering will tend to generate clusters that are distinct from each
other based on characteristics the rover can measure, which should help the science
team avoid creating signatures that the rover cannot reliably distinguish from back-
ground features.

3.4 POMDP Planning: Applicability

The second part of our proposed work is to extend POMDP planning algorithms in
ways that bridge the gap between the current state-of-art and the planning requirements
of the SA domain. This section explains why SA is a natural domain in which to apply
POMDP planning.

Our main motivation for considering a POMDP model for SA is the importance of
sensor planning, i.e., modeling the information the rover expects to gain from future
sensor readings and the effect it will have on subsequent rover decisions. For example,
in the LITA domain, when the rover sees a rock, it has the option of applying its long-
range spectrometer. Although the spectrum for the rock has some intrinsic value to the
science team, it has an additionalinformationalvalue: once the rover has the spectrum,

14



it can make a better decision about whether to approach the rock and take a fluorescence
imager (FI) image.

Consider how we could implement sensor planning. Assume that we start with
a deterministic model that, for each rock type, specifies the intrinsic value of both
a spectrum and an FI image. In the absence of uncertainty, it is straightforward to
design a planner based on this model. When deciding whether to take an FI image of a
particular rock, the planner can simply look up the value of the image and compare it
to the value of other actions that are competing for its resources.

Now we move closer to the real scenario. Suppose that instead of knowing the
type of the rock, the rover analyzes the initial image in which the rock was detected,
and has a noisy classification, a distribution over types the rock might have. For the
moment, ignore the availability of the spectrometer. It is still easy to decide whether or
not to take an FI image. Based on the noisy classification, the planner can calculate the
expectedvalue of the FI image and use that in place of the certain value we discussed
earlier.

But return to the spectrometer. How can we decide whether to use it? We can de-
termine the expected intrinsic value of the spectrum just as we did for the FI image, but
this is an underestimate of the overall value, because it does not take into account the
informationalvalue: the spectrum would decrease the uncertainty in the classification,
giving the rover a better estimate of the expected value of the FI image, and therefore
a better basis on which to make the decision of whether to take the FI image.

There are several heuristic solutions to this problem. At modeling time, the intrinsic
values of targets can be inflated to include a manual estimate of informational value. Or
the planner could always choose the action that is expected to most reduce the entropy
of the classification [Pedersen, 2000]. Or it could attempt to reduce entropy only when
entropy is above a fixed threshold [Cassandra et al., 1996]. A good heuristic approach
for LITA might be to assign a pseudo-informational value to each action that scales
with how much it is expected to reduce classification entropy.

So to summarize: we can capture the first order effects of uncertainty by planning
based on the expected intrinsic value of actions. We can capture the second order
effects by assigning a heuristic pseudo-informational value to sensing actions. But now
we consider third order effects: the way that informational value depends on context,
including:

• Importance of subsequent decisions:In cases where the potential value of the
FI image is higher or the FI imaging operation is more costly, the decision of
whether to take the FI image has more impact and the informational value of the
spectrum is higher.

• Inabiity to apply the information:If the rover cannot take an FI image of the
rock, the spectrum has no informational value. This might happen if there is no
traversable path to the rock, or if there is not enough time in the rover’s schedule.

• Irrelevance of uncertainty:If the rock could have any of three types, but FI
images of all three types have the same value, then there is no point in further
narrowing it down.

15



POMDP planning goes beyond the heuristic approaches in that it accurately models
these third order effects, and does so in a principled way that relaxes the need for careful
tuning of manual heuristics.

3.5 POMDP Planning: Feasibility

Unfortunately, realistic problems in the SA domain are far beyond the abilities of exist-
ing POMDP algorithms. This section discusses why there is some hope of overcoming
the present intractability of POMDP planning in order to tackle realistically sized prob-
lems in the SA domain.

The first part of our proposed research in planning techniques is to combine heuris-
tic search with efficient value function representations to speed up planning. In the
POMDP value iteration community, much effort has been focused on compact repre-
sentations of the value function [Kaelbling et al., 1998]. Most existing value iteration
approaches generate policies that are guaranteed to perform well starting from any ini-
tial belief. But we believe that in most real-world situations, one should assume that the
agent starts with knowledge of a particular initial belief, and can use that knowledge to
focus on relevant parts of the belief space.

We propose a POMDP algorithm called heuristic search value iteration (HSVI)
that uses heuristic search to repeatedly explore forward from the initial belief. HSVI
stores upper and lower bounds on the value function. During forward exploration,
HSVI selects actions and observations based on its current bounds. Whenever it visits
a belief during exploration, it performs a local update that tightens the bounds at that
belief. Because of the representation HSVI uses for its bounds, each local update also
generalizes to neighboring beliefs.
§4 describes our preliminary work on HSVI, discusses its soundness and conver-

gence, and compares its performance with other state-of-the-art value iteration algo-
rithms on four benchmark problems from the literature. On some of these problems,
HSVI displays speedups of greater than 100. We provide additional results on the
RockSampleproblem, a highly simplified SA problem. Our largest instance ofRock-
Samplehas 12,545 states, 10 times larger than most problems in the scalable POMDP
literature.

The second part of our proposed research in planning is to leverage a factored state
representation in two ways. First, it is commonly the case that some state elements
are completely observable, or at least that uncertainty about them is small enough to
be ignored. For example, in the SA problem, it appears that representing uncertainty
about characteristics of science features is more important than for most other state
elements, such as position or remaining battery energy.

We believe that the POMDP community has not paid enough attention to han-
dling these observable state elements efficiently. The tractability of POMDP algorithms
should scale according to the amount of uncertainty involved: in the extreme case that
all state elements are observable, they should be nearly as efficient as good MDP al-
gorithms. This appears to largely be a matter of selecting POMDP algorithms with
MDP analogs, and doing the appropriate bookkeeping. In a sense, we are identifying a
POMDP subclass of “mostly observable MDPs” (MOMDPs), and proposing to adapt
POMDP algorithms so that they scale well over this subclass.

16



Factored state can also be used to develop efficient representations of the beliefs
andα vectors used in value iteration. One such representation is algebraic decision
diagrams (ADDs) [Bahar et al., 1993, Hoey et al., 1999]. ADDs are directed acyclic
graphs that branch on boolean variables such as state elements. They can compactly
represent state-indexed vectors that have uniform values over many entries (or nearly
uniform values [St-Aubin et al., 2000]). We are investigating ADD extensions that can
also compactly represent probability distributions with some conditional independence
between state elements (see§5.2.1).

The final part of our proposed planning research is to investigate continuous plan-
ning (interleaving planning and execution) in the POMDP context. There are two major
ways that continuous planning can improve planning performance [Nourbakhsh, 1997]:

• Fast updates:The planner can reuse information from past planning episodes to
speed up plan updates.

• Deferred decision-making:In some cases, the agent can execute the first part of
the plan before the overall plan is complete, while still guaranteeing low regret.
This helps avoid spinning out what-if scenarios; instead, the agent can defer
decision-making until it has the relevant information.

Continuous planning seems like a natural idea in the POMDP model, but to our
knowledge it has not been explicitly addressed before. This is apparently because
many POMDP algorithms generate a policy with global performance bounds. Once
such a policy is found, it never needs to be updated, because it can be applied from any
point in the belief space.

However, HSVI and other recent algorithms show that planning can converge more
quickly when the planner focuses its attention on a subset of the belief space, producing
a policy guaranteed to have good performance only when starting from the specified
initial belief. In this framework, policy updates are again relevant, especially when
execution of the early parts of a plan leads to unexpected results.

The current version of HSVI (somewhat fortuitously) already supports both main
continuous planning goals discussed earlier. We would like to run experiments to de-
termine the benefits, and possibly develop extensions.

When notified of a new initial belief for planning, HSVI can reuse work from past
planning episodes simply by keeping its old bounds on the value function. Thus, during
plan updates, it would start with tighter bounds, but at the cost of having more elements
in its initial bounds representations (which slows updates). It is not clear whether this
trade-off is worthwhile. There may be techniques for culling parts of the old bounds
that are irrelevant given the new initial belief.

“Convergence” for HSVI normally means that it has tight bounds on the value
function at the initial belief. However, it is often the case that a particular first action
provably dominates all others well before it becomes clear what the exact value of that
action is. In this case, the agent could stop early and execute the first action. Dom-
inance can be checked naı̈vely by examining the expected value bounds after taking
each action. We also have ideas for stronger dominance-checking techniques based on
the structure of the bounds representation or on additional look-ahead.

17



4 Preliminary Work: Heuristic Search Value Iteration

4.1 Algorithm Introduction

HSVI is an approximate POMDP solution algorithm that combines techniques for
heuristic search with piecewise linear convex value function representations. HSVI
stores upper and lower bounds on the optimal value functionV ∗. Its fundamental oper-
ation is to make a local update at a specific belief, where the beliefs to update are chosen
by exploring forward in the search tree according to heuristics that select actions and
observations.

HSVI makes asynchronous (Gauss-Seidel) updates to the value function bounds,
and always bases its heuristics on the most recent bounds when choosing which suc-
cessor to visit. It uses a depth-first exploration strategy. Beyond the usual memory vs.
time trade-off, this choice makes sense because a breadth-first heuristic search typically
employs a priority queue, and propagating the effects of asynchronous bounds updates
to the priorities of queue elements would create substantial extra overhead.

We refer to the lower and upper bound functions asV andV̄ , respectively. We use
the interval function̂V to refer to them collectively, such that

V̂ (b) = [V (b), V̄ (b)]
width(V̂ (b)) = V̄ (b)− V (b)

HSVI is outlined in algs. 4.1 and 4.2. The following subsections describe aspects of
the algorithm in more detail.

4.1.1 Value Function Representation

Most value iteration algorithms focus on storing and updating the lower bound. The
vector setrepresentation is commonly used. The value at a pointb is the maximum
projection ofb onto a finite setΓV of vectorsα:

V (b) = max
α∈ΓV

(α · b).

For finite-horizon POMDPs, a finite vector set can representV ∗ exactly [Sondik, 1971].
Even for the discounted infinite-horizon formulation, a finite vector set can approx-
imateV ∗ arbitrarily closely. Equally important, when the value function is a lower
bound, it is easy to perform a local update on the vector set by adding a new vector.

Unfortunately, if we represent the upper bound with a vector set, updating by
adding a vector does not have the desired effect of improving the bound in the neigh-
borhood of the local update. To accommodate the need for updates, we use apoint set
representation for the upper bound. The value at a pointb is the projection ofb onto
the convex hull formed by a finite setΥV̄ of belief/value points(bi, v̄i). Updates are
performed by adding a new point to the set.

The projection onto the convex hull is calculated with a linear program (LP). This
upper bound representation and LP technique was suggested in [Hauskrecht, 2000],
but in that work LP projection seems to have been rejected without testing on time
complexity grounds. Note that with the high dimensionality of the belief space in

18



Algorithm 4.1. π = HSVI(ε).

HSVI(ε) returns a policy π such that
regret(π, b0) ≤ ε.a

1. Initialize the boundŝV .

2. While width(V̂ (b0)) > ε, repeatedly invoke
explore(b0, ε, 0).

3. Having achieved the desired precision, return the
direct-control policyπ corresponding to the lower
bound.

aIn fact, π can be executed starting at any beliefb. In general,
regret(π, b) ≤ width(V̂ (b)), which is guaranteed to be less thanε
only atb0.

Algorithm 4.2. explore(b, ε, t).

explore recursively follows a single path
down the search tree until satisfying a ter-
mination condition based on the width of
the bounds interval. It then performs a se-
ries of updates on its way back up to the
initial belief.

1. If width(V̂ (b)) ≤ εγ−t, return.

2. Select an actiona∗ and observationo∗ according
to the forward exploration heuristics.

3. Callexplore(τ(b, a∗, o∗), ε, t + 1).

4. Locally update the boundŝV at beliefb.

our larger problems, LP projection is far more efficient than explicitly calculating the
convex hull: an explicit representation would not even fit into available memory. We
solve the LP using the commercial ILOG CPLEX software package.

4.1.2 Initialization

HSVI requires initial bounds, which we would like to have the following properties:

1. Validity: V 0 ≤ V ∗ ≤ V̄0.2

2Throughout this paper, inequalities between functions are universally quantified, i.e.,V ≤ V ′ means
V (b) ≤ V ′(b) for all b.

19



2. Uniform improvability: This property is explained in the section on theoretical
results.

3. Precision:The bounds should be fairly close toV ∗.

4. Efficiency: Initialization should take a negligible proportion of the overall run-
ning time.

The following initialization procedure meets these requirements. We calculateV 0 us-
ing the blind policy method [Hauskrecht, 1997]. Letπa be the policy of always select-
ing actiona. We can calculate a lower boundRa on the long-term reward ofπa by
assuming that we are always in the worst state to choose actiona from.

Ra =
∞∑

t=0

γt min
s

R(s, a) =
mins R(s, a)

1− γ

We select the tightest of these bounds by maximizing.

R = max
a

Ra

Then the vector set for the initial lower boundV 0 contains a single vectorα such that
everyα(s) = R.

To initialize the upper bound, we assume full observability and solve the MDP ver-
sion of the problem [Astrom, 1965]. This provides upper bound values at the corners of
the belief simplex, which form the initial point set. We call the resulting upper bound
VMDP.

V*

V

V

b b

update

Figure 4.1: Locally updating atb.

4.1.3 Local Updates

The Bellman update,H, is the fundamental operation of value iteration. It is defined
as follows:

QV (b, a) =
∑

s

R(s, a)b(s) +

γ
∑

o

Pr(o | b, a)V (τ(b, a, o))

HV (b) = max
a

QV (b, a)

20



Algorithm 4.3. β = backup(V , b).

The backup function can be viewed as a
generalization of the Bellman update that
makes use of gradient information. The as-
signments are universally quantified, e.g.,
βa,o is computed for everya, o.

1. βa,o ← argmaxα∈ΓV
(α · τ(b, a, o))

2. βa(s) ← R(s, a)+

γ
∑

o,s′ βa,o(s′)O(s′, a, o)T (s, a, s′)
3. β ← argmaxβa

(βa · b).

QV (b, a) can be interpreted as the value of taking actiona from beliefb.
Exact value iteration calculates this update exactly over the entire belief space.

HSVI, however, uses local update operators based onH. Because the lower and upper
bound are represented differently, we have distinct local update operatorsLb andUb.
Locally updatingatb means applying both operators. To update the lower bound vector
set, we add a vector. To update the upper bound point set, we add a point. The operators
are defined as:

ΓLbV = ΓV ∪ backup(V , b)
ΥUbV̄ = ΥV̄ ∪ (b, HV̄ (b)),

wherebackup(V , b) is the usual gradient backup, described in alg. 4.3.
Fig. 4.1 represents the structure of the bounds representations and the process of

locally updating atb. In the left side of the figure, the points and dotted lines represent
V̄ (upper bound points and convex hull). Several solid lines represent the vectors of
ΓV . In the right side of the figure, we see the result of updating both bounds atb, which
involves adding a new point toΥV̄ and a new vector toΓV , bringing both bounds closer
to V ∗.

HSVI periodically prunes dominated elements in both the lower bound vector set
and the upper bound point set. Pruning occurs each time the size of the relevant set
has increased by 10% since the last pruning episode. This pruning frequency was not
carefully optimized, but there is not much to be gained by tuning it, since we do note
see substantial overhead either from keeping around up to 10% too many elements or
from the pruning operation itself. For the lower bound, we prune only vectors that are
pointwisedominated (i.e., dominated by a single other vector). This type of pruning
does not eliminate all redundant vectors, but it is simple and fast. For the upper bound,
we prune all dominated points, defined as(bi, v̄i) such thatHV̄ (bi) < v̄i.

4.1.4 Forward Exploration Heuristics

This section discusses the heuristics that are used to decide which child of the current
node to visit as the algorithm works its way forward from the initial belief. Starting

21



Q(b,a3)Q(b,a2)Q(b,a1) V(b)H

Figure 4.2: Relationship between̂Q(b, ai) andHV̂ (b).

from parent nodeb, HSVI must choose an actiona∗ and an observationo∗: the child
node to visit isτ(b, a∗, o∗).

Define theuncertaintyatb to mean the width of the bounds interval. Recalling that
the regret of a policy returned by HSVI is bounded by the uncertainty at the root node
b0, our goal in designing the heuristics is to ensure that updates at the chosen child tend
to reduce the uncertainty at the root.

First we consider the choice of action. Define the interval functionQ̂ as follows:

Q̂(b, a) = [QV (b, a), QV̄ (b, a)]

Fig. 4.2 shows the relationship between the boundsQ̂(b, a) on each potential action
and the boundsHV̂ (b) at b after a Bellman update. We see that theHV̂ (b) interval is
determined by only two of thêQ(b, a) intervals: the ones with the maximal upper and
lower bounds. This relationship immediately suggests that, among theQ̂ intervals, we
should choose to update one of these two most promising actions. But which one? It
turns out we can guarantee convergence only by choosing the action with the greatest
upperbound.

a∗ = argmax
a

QV̄ (b, a).

This is sometimes called the IE-MAX heuristic [Kaelbling, 1993]. It works because,
if we repeatedly choose ana∗ that is sub-optimal, we will eventually discover its sub-
optimality when thea∗ upper bound drops below the upper bound of another action.
However, if we were to choosea∗ according to the highest lower bound, we might never
discover its sub-optimality, because further work could only cause its lower bound to
rise.

Next we need to select an observationo∗. Consider the relationship betweenQ̂(b, a∗)
and the bounds at the various child nodesτ(b, a∗, o) that correspond to different obser-
vations. From the Bellman equation, we have

width(Q̂(b, a∗))=γ
∑

o

Pr(o|b, a∗)width(V̂ (τ(b, a∗, o))).

Note that this explains the termination criterion ofexplore, width(V̂ (b)) ≤ εγ−t.
Because the uncertainty at a nodeb after an update is at mostγ times a weighted
average of its child nodes, we have successively looser requirements on uncertainty at
deeper nodes: we rely on theγ factor at each layer on the way back up to make up the

22



Algorithm 4.4. π = AnytimeHSVI().

AnytimeHSVI() is an anytime variant of
HSVI. When interrupted, it returns a pol-
icy whose regret is bounded by the current
value ofwidth(V̂ (b0)).

Implementation: AsHSVI, but in step (2), in the call to
explore(b0, ε, 0), replaceε with ζ width(V̂ (b0)), where
ζ < 1 is a scalar parameter. Empirically, performance is
not very sensitive toζ; we usedζ = 0.95 in the experi-
ments, which gives good performance.

difference. Given these facts, we can defineexcess uncertainty

excess(b, t) = width(V̂ (b))− εγ−t

such that a node with negative excess uncertainty satisfies theexplore termination con-
dition. We say such a node isfinished. Conveniently, the excess uncertainty atb is at
most a probability-weighted sum of the excess uncertainties at its children

excess(b, t)≤
∑

o

Pr(o|b, a∗)excess(τ(b, a∗, o), t + 1).

Thus we can focus on ensuring early termination by selecting the deptht+1 child that
most contributes to excess uncertainty atb:

o∗ = argmax
o

[
Pr(o|b, a∗)excess(τ(b, a∗, o), t + 1)

]
.

Past heuristic search approaches have usually either sampled fromPr(o|b, a∗) or maxi-
mized weighted uncertainty rather than weightedexcessuncertainty. We find the excess
uncertainty heuristic to be empirically superior. In addition, this heuristic allows us to
derive a time bound on HSVI convergence.

4.1.5 Anytime Usage

The definition ofHSVI(ε) given above assumes that we know in advance that we want
a policy with regret bounded byε. In practice, however, we often do not know what
a reasonableε is for a given problem—we just want the algorithm to do the best it
can in the available time. In support of this goal, we define a variant algorithm called
AnytimeHSVI (alg. 4.4). WhereHSVI uses a fixedε, AnytimeHSVI adjustsε at each
top-level call toexplore, setting it to be slightly smaller than the current uncertainty at
b0. Instead of having a fixed finish line, we have a finish line that is always just ahead,
receding as we approach.

AnytimeHSVI is used for all of the experiments in this paper. However, our theo-
retical analysis focuses onHSVI(ε), which is easier to handle mathematically.

23



4.2 Theoretical Results

This section discusses some of the key soundness and convergence properties ofHSVI(ε).
The actual proofs will be presented in a forthcoming technical report [Smith and Simmons, 2004].

• The initial lower and upper bound value functions areuniformly improvable,
meaning that applyingH brings them everywhere closer toV ∗.

• If V is uniformly improvable, then the corresponding direct control policyPV

supportsV , meaning thatV ≤ JPV .3

• If V̄ is uniformly improvable, then it is valid, in the sense thatV ∗ ≤ V̄ .

• Our local update operators preserve uniform improvability. Thus, throughout the
execution ofHSVI, the current best policyPV supportsV , andV̄ is valid.

• Together, these facts imply that HSVI has valid bounds on the direct control
policy, in the sense thatV ≤ JπV ≤ V̄ . This validity holds throughout execution
and everywhere in the belief space.

• The regret(π, b0) of the policy π returned byHSVI(ε) is at mostε. When
AnytimeHSVI is interrupted, theregret(π, b0) of the current best policyπ is
at mostwidth(V̂ (b0)).

• There is a finite depth

tmax = dlogγ(ε/
∣∣∣∣V̄0 − V 0

∣∣∣∣
∞)e

such that all nodes with deptht ≥ tmax are finished.

• The uncertainty at a node never increases (thus finished nodes never become
unfinished).

• After each top-level call to explore, at least one previously unfinished node is
finished. This property depends on our particular choice of heuristics.

• As a result,HSVI(ε) is guaranteed to terminate after performing at mostumax

updates, where

umax = tmax
(|A||O|)tmax+1 − 1
|A||O| − 1

.

(Note this is a conservative theoretical bound; empirically, it is much faster.)

3Direct and lookahead control policies corresponding to a value function are discussed in, e.g.,
[Hauskrecht, 2000].

24



Exit

Figure 4.3:RockSample[7, 8].

4.3 TheRockSampleProblem

To test HSVI, we have developedRockSample, a scalable problem that models rover
science exploration (fig. 4.3). The rover can achieve reward by sampling rocks in the
immediate area, and by continuing its traverse (reaching the exit at the right side of the
map). The positions of the rover and the rocks are known, but only some of the rocks
have scientific value; we will call these rocks “good”. Sampling a rock is expensive, so
the rover is equipped with a noisy long-range sensor that it can use to help determine
whether a rock is good before choosing whether to approach and sample it.

An instance ofRockSamplewith map sizen × n and k rocks is described as
RockSample[n, k]. The POMDP model ofRockSample[n, k] is as follows. The state
space is the cross product ofk + 1 features:Position= {(1, 1), (1, 2), . . . , (n, n)}, and
k binary featuresRockTypei = {Good, Bad} that indicate which of the rocks are good.
There is an additional terminal state, reached when the rover moves off the right-hand
edge of the map. The rover can select fromk + 5 actions:{North, South, East, West,
Sample, Check1, . . ., Checkk}. The first four are deterministic single-step motion ac-
tions. TheSampleaction samples the rock at the rover’s current location. If the rock
is good, the rover receives a reward of 10 and the rock becomes bad (indicating that
nothing more can be gained by sampling it). If the rock is bad, it receives a penalty
of −10. Moving into the exit area yields reward 10. All other moves have no cost or
reward.

EachChecki action applies the rover’s long-range sensor to rocki, returning a noisy
observation from{Good, Bad}. The noise in the long-range sensor reading is deter-
mined by the efficiencyη, which decreases exponentially as a function of Euclidean
distance from the target. Atη = 1, the sensor always returns the correct value. At
η = 0, it has a 50/50 chance of returningGoodor Bad. At intermediate values, these
behaviors are combined linearly. The initial belief is that every rock has equal proba-
bility of beingGoodor Bad.

4.4 Experimental Results

We tested HSVI on several well-known problems from the scalable POMDP literature,
as well as instances ofRockSample. Our benchmark set follows [Pineau et al., 2003],
which provides performance numbers for PBVI and some other value iteration algo-
rithms. Note that all of the problems haveγ = 0.95.

Experiments were conducted as follows. Periodically during each run, we inter-

25



ThreeState (3s 4a 3o) Tag (870s 5a 30o)

100 101

18

20

22

24

26

wallclock time (seconds)

so
lu

tio
n 

qu
al

ity

bounds
simulation

102 103 104−20

−15

−10

−5

0

wallclock time (seconds)

so
lu

tio
n 

qu
al

ity

bounds
simulation

RockSample[5,7] (3201s 12a 2o) RockSample[7,8] (12545s 13a 2o)

102 103 1040

5

10

15

20

25

30

wallclock time (seconds)

so
lu

tio
n 

qu
al

ity

bounds
simulation

103 1040

5

10

15

20

25

wallclock time (seconds)

so
lu

tio
n 

qu
al

ity

bounds
simulation

Figure 4.4: Solution quality vs. time.

rupted HSVI and simulated its current best policyπ, providing an estimate of the so-
lution quality,Jπ(b0). The reported quality is the average reward received over many
simulation runs (100-1000). Replicating earlier experiments, each simulation was ter-
minated after 251 steps.

For each problem, results are reported over a single run of the algorithm. In a
few cases we made multiple runs, but since HSVI is not stochastic, successive runs
are identical up to minuscule changes arising from varying background load on the
platform we used, a Pentium-III running at 850 MHz, with 256 MB of RAM.

Fig. 4.4 shows HSVI solution quality vs. time for four problems. In these plots, we
also track the boundsV (b0) andV̄ (b0). Recall that at every phase of the algorithm, we
are guaranteed thatV (b0) ≤ Jπ(b0) ≤ V̄ (b0). Fig. 4.4 should reflect this, at least up to
the error in our estimate ofJπ(b0) (errorbars are 95% confidence intervals).ThreeState
is a trivial problem we generated, an example of HSVI running to convergence. On the
larger problems, the bounds have not converged by the end of the run.

Fig. 4.4 shows running times and final solution quality for HSVI and some other
state-of-the-art algorithms. Unfortunately, not all competitive algorithms could be in-
cluded in the comparison, because there is no widely accepted POMDP benchmark
that we could use. Results for algorithms other than HSVI were computed on different
platforms; running times are only very roughly comparable. Among the algorithms
compared, HSVI’s final solution quality is in every case within measurement error of

26



the best reported so far, and in one case (theTagproblem) is significantly better.

Problem (num. states/actions/observations) Goal% Reward Time (s)|Γ|
Tiger-Grid (36s 5a 17o)
QMDP [Pineau et al., 2003] n.a. 0.198 0.19 n.a.
Grid [Brafman, 1997] n.a. 0.94 n.v. 174
PBUA [Poon, 2001] n.a. 2.30 12116 660
PBVI [Pineau et al., 2003] n.a. 2.25 3448 470
HSVI n.a. 2.35 10341 4860
Hallway (61s 5a 21o)
QMDP [Littman et al., 1995] 47.4 n.v. n.v. n.a.
PBUA [Poon, 2001] 100 0.53 450 300
PBVI [Pineau et al., 2003] 96 0.53 288 86
HSVI 100 0.52 10836 1341
Hallway2 (93s 5a 17o)
QMDP [Littman et al., 1995] 25.9 n.v. n.v. n.a.
Grid [Brafman, 1997] 98 n.v. n.v. 337
PBUA [Poon, 2001] 100 0.35 27898 1840
PBVI [Pineau et al., 2003] 98 0.34 360 95
HSVI 100 0.35 10010 1571
Tag (870s 5a 30o)
QMDP [Pineau et al., 2003] 17 -16.769 13.55 n.a.
PBVI [Pineau et al., 2003] 59 -9.180 180880 1334
HSVI 100 -6.37 10113 1657
RockSample[4,4](257s 9a 2o)
PBVI [Pineau, personal communication] n.a. 17.1 ∼2000 n.v.
HSVI n.a. 18.0 577 458
RockSample[5,5](801s 10a 2o)
HSVI n.a. 19.0 10208 699
RockSample[5,7](3201s 12a 2o)
HSVI n.a. 23.1 10263 287
RockSample[7,8](12545s 13a 2o)
HSVI n.a. 15.1 10266 94

n.a. = not applicable n.v. = not available

Figure 4.5: Multi-algorithm performance comparison.

Fig. 4.4, which shows only a single time/quality data point for each problem, does
not provide enough data for speed comparisons. Therefore we decided to make a closer
comparison with one algorithm. PBVI was chosen both because it is a competitive
algorithm, and because [Pineau et al., 2003] presents detailed solution quality vs. time
curves for our benchmark problems.

In order to control for differing lengths of runs, we report the time that each al-
gorithm took to reach a common valuevc, defined to be the highest value thatboth
algorithms were able to reach at some point during their run. There is uncertainty asso-

27



Time
Problem (num. states/actions/observations)vc PBVI HSVI Speedup
Tiger-Grid (36 s 5a 17o) 2.25 3448 1053 3.3
Hallway (61s 5a 21o) 0.52 100-200 163 ∼1
Hallway2 (93s 5a 17o) 0.34 360 181 2.0
Tag (870s 5a 30o) -9.18 180880 39 4600
RockSample[4,4](256s 9a 2o) 17.1 ∼2000 23 ∼87

Figure 4.6: Performance comparison, HSVI and PBVI.

ciated with some of the times for PBVI because they were derived from manual reading
of published plots; this uncertainty is noted in our comparison table. PBVI and HSVI
appear to have been run on comparable platforms.4

Fig. 4.6 compares PBVI and HSVI performance. The two algorithms show similar
performance on smaller problems. As the problems scale up, however, HSVI provides
dramatic speedup. A brief explanation of why this might be the case: Recall that the
policy returned by HSVI is based solely on the lower bound. The upper bound is
used only to guide forward exploration. But upper bound updates, which involve the
solution of several linear programs, often take longer than lower bound updates. Since
PBVI keeps only a lower bound, its updates proceed much more quickly. HSVI can
only have competitive performance to the extent that the intelligence of its heuristics
outweighs the speed penalty of updating the upper bound. Apparently, the heuristics
become relatively more important as problem size increases.

Because HSVI combines several existing solution techniques, it can be compared
to a wide range of related work. Figure 4.7, although far from exhaustive, lists many
relevant algorithms and some of the features they share with HSVI.

HSVI Y Y Y Y Y Y Y
ICUB/ICUL [Hauskrecht, 1997] Y Y - Y - Y Y
BI-POMDP [Washington, 1997] Y Y Y Y Y - Y
RTDP-BEL [Geffner and Bonet, 1998] Y Y Y Y - - -
[Brafman, 1997] Y Y - Y Y Y -
[Dearden and Boutilier, 1994] - Y Y Y - - Y
LAO* [Hansen and Zilberstein, 2001] - Y Y Y - - Y
PBVI [Pineau et al., 2003] Y - Y - - Y -
PBDP [Zhang and Zhang, 2001] Y - - - - Y -
Incremental pruning [Cassandra et al., 1997] Y - - - - Y -

Applied to POM
DPs

Asynchronous updates

  Examines only reachable states/beliefs

Uses action heuristic

Uses observation/outcome heuristic

Leverages value function convexity

Keeps upper and lower bounds

Figure 4.7: Relevant algorithms and features.

4PBVI performance onRockSample[4, 4] and a rough performance estimate for the computer used in
PBVI experiments were provided courtesy of J. Pineau (personal communication).

28



4.5 HSVI Related Work

[Hauskrecht, 1997], perhaps the closest prior work, describes separate algorithms for
incrementally calculating the upper bound (ICUB) and lower bound (ICLB). The ICUB
upper bound is similar to that of HSVI in that it is initialized with the value function
for the underlying MDP (VMDP), improved with asynchronous backups, and used as
an action heuristic. Unlike HSVI, ICUB uses a grid-based representation, and explores
forward from belief space critical points rather than a specified initial belief. The ICUL
lower bound uses the same vector set representation as HSVI and adds the result of
each gradient backup in the same way. But because ICUB and ICUL are separate
algorithms, ICUL’s forward exploration does not select actions based on the upper
bound, and neither algorithm makes use of an uncertainty-based observation heuristic.

Other related work mostly falls into two camps. The first are algorithms
that combine heuristic search with dynamic programming updates. RTDP-BEL
[Geffner and Bonet, 1998], a POMDP extension of the well-known RTDP value it-
eration technique for MDPs [Barto et al., 1995], turns out to be very similar to ICUB.
BI-POMDP [Washington, 1997] uses forward exploration based on AO∗ with VMDP as
its heuristic. BI-POMDP keeps upper and lower bounds on nodes in the search tree—
however, it does not explicitly represent the bounds as functions, so it is unable to gen-
eralize the value at a belief to neighboring beliefs. Some other algorithms in this group
are [Dearden and Boutilier, 1994, Brafman, 1997, Hansen and Zilberstein, 2001].

The second camp includes algorithms that employ a piecewise linear convex value
function representation and gradient backups. There are a host of algorithms along
these lines, dating back to [Sondik, 1971]. Most differ from HSVI in that they perform
gradient backups over the full belief space instead of focusing on relevant beliefs. One
exception is PBVI [Pineau et al., 2003], which performs synchronous gradient backups
on a growing subset of the belief space, designed such that it examines only reach-
able beliefs. Unlike HSVI, PBVI does not keep an upper bound and does not use a
value-based action heuristic when expanding its belief set. Other algorithms in this
group include incremental pruning [Cassandra et al., 1997] and point-based dynamic
programming [Zhang and Zhang, 2001].

HSVI avoids examining unreachable beliefs using forward exploration.
[Boutilier et al., 1998] describe how to precompute reachability in order to eliminate
states in an MDP context. In a POMDP context their technique would go beyond
HSVI by explicitly reducing the dimensionality of the belief space, but the remaining
space might still include unreachable beliefs never visited by HSVI.

Finally, there are many competitive POMDP solution approaches that do not em-
ploy heuristic search or a PWLC value function representation: too many to discuss
here. We refer the reader to a survey [Aberdeen, 2002]. Hopefully, increased adoption
of common benchmarks in the POMDP community will allow us to better compare
HSVI with other algorithms in the future.

29



5 Proposed Research

5.1 Science Autonomy

Much of the science autonomy research agenda was laid out in§3. This section explains
the project context for the proposed work and provides a preliminary development plan.

5.1.1 Life in the Atacama

The first part of the proposed work is to assist in developing and field testing an SA
system. We will create an overall SA architecture and develop the planning module in
that architecture. This part of the work will be associated with the Life in the Atacama
(LITA) project.

LITA is studying robotic astrobiology, searching for extremophile life in the Ata-
cama Desert of Chile [Wettergreen et al., 2003]. It is part of the NASA ASTEP pro-
gram, which seeks to perform useful science on Earth while working under operational
constraints relevant to planetary exploration. The project includes three rover field
expeditions in three years (April 2003, September 2004, September 2005). in 2005.

Each LITA field expedition is based around a single rover operating in the Ata-
cama. The rover carries instruments to detect microorganisms and chlorophyll-based
life forms and to characterize habitats. Instruments include panoramic imagers, fluo-
rescence imagers for detection of chlorophyll and other biomolecules, spectrometers,
as well as mechanisms for shallow subsurface access.

LITA’s primary goals are:

• Seek life: Seek and characterize biota surviving in the Atacama and analyze
microhabitats. We will question the hypothesis that the most arid regions of the
Atacama represent an absolute desert.

• Understand habitat:Determine the physical and environmental conditions asso-
ciated with identified past and current habitats, including the search for structural
fossils, the monitoring of current biological oases and microorganic communi-
ties, and learning how these organisms have contributed to the modification of
their environment.

• Relevant science:Develop, integrate, and field test a suite of science instruments
that form a complete payload relevant to the NASA Mars Exploration Program
and traceable to the Mars Exploration Program Payload Analysis group priority
investigations and measurements that will facilitate the exploration of favorable
environments for life on Mars in upcoming missions.

In the course of a day, the solar-powered rover can take hundreds of science instru-
ment readings and autonomously navigate over distances of several kilometers. The
focus of each expedition is a series of one-week periods of remote operations, during
which a science team located in the U.S. controls the rover under operational con-
straints like those faced with Mars rovers, including:

• A limit of two communications windows per day with extremely limited band-
width (on the order of 50 MB).

30



• No access to information about the exact location of the site or any previous
surveys in that area.

• Maps similar to those we currently have of Mars, based on satellite or aerial
imagery.

A field operations team is on site with the rover. Their primary role is to run pre-
liminary tests that ensure the rover is ready for remote operations. There is a protocol
that prohibits them from communicating with the science team or interfering with the
rover (except in emergencies). Also on site is a ground truth team of scientists that
follow the rover, and later assess the accuracy of the conclusions reached by the remote
science team.

Because the rover is solar-powered and needs sunlight for navigation, most of its
activities must be carried out during daylight hours. It has two communications win-
dows with the science team, at the beginning and end of its day. The evening window
is primarily a data downlink, during which the rover communicates its status and any
science data. The morning window is primarily an uplink of goals for the day’s opera-
tions.

For the 2004 expedition, remote operations will primarily use what was described
in §3.1 as the baseline high-mobility operations strategy. Early versions of all of the
software modules described in our SA architecture will be present. We may attempt
some simple SA-relevant operations: for instance, performing follow-up spectrometer
readings on a few interesting rocks in the end-of-day panorama.

For the 2005 expedition, we plan to develop and field test an SA system that imple-
ments the science on the fly and intelligent site survey SA operational modes.

5.1.2 Planner Implementations

Over the course of the proposed work, we will implement multiple versions of the SA
planning module, to be applied in different ways.

September 2004 LITA Expedition. For use in the field, we will focus on quickly
building a working version of the planner with baseline functionality. This version will
not use a probabilistic model. It will be based on heuristic search in plan space, and we
will likely limit the flexibility of the search. For example, we may require that science
goals are pursued in the order that they were specified by the science team. Lower-level
operations such as coverage patterns will be scripted. The design will be optimized for
stability and ease of development and validation.

Ongoing research:We will produce a series of implementations for POMDP plan-
ning research. These algorithms will work with probabilistic models, and they will
share many of the properties of HSVI, such as using forward search in belief space and
keeping upper and lower bounds on the value function. They will proceed in several
research directions as discussed earlier. These planners will be optimized for quick
development and easy analysis of results. They will be tested in simulation, using
probabilistic SA models based on experience from the 2004 LITA expedition.

September 2005 LITA Expedition: The planner deployed in 2005 will be based
on the field experience in 2004 and research during the intervening period. Imple-
mentation will start by replicating the deterministic planning functionality of the 2004

31



planner, but based on an HSVI-like search strategy that is able to deal with probabilistic
model elements, which we might add later. If time permits, we will migrate selected
elements of the research systems into the field system. The design will be optimized
for stability, clean extensible architecture, and ease of validation.

5.2 Probabilistic/POMDP Planning

§3.5 laid out several topics of research in POMDP planning. This section provides
additional detail on one of those topics.

5.2.1 Extending Algebraic Decision Diagrams

Factored state can be used to develop efficient representations of the beliefs andα
vectors used in POMDP value iteration. One such representation is algebraic de-
cision diagrams (ADDs) [Bahar et al., 1993, Hoey et al., 1999]. ADDs are directed
acyclic graphs that branch on boolean variables such as state elements. They gener-
alize the ordered binary decision diagrams that have revolutionized circuit verification
[Bryant, 1986]. ADDs can compactly represent state-indexed vectors that have uniform
values over many entries (or nearly uniform values [St-Aubin et al., 2000]). We are in-
vestigating ADD extensions that can also compactly represent probability distributions
with some conditional independence between state elements.

This section shows some examples to give a flavor for our concept, called the prod-
uct ADD (PADD). Suppose that the world state includes three boolean variablesX, Y ,
andZ. In the SA domain, each of these variables could represent whether a rock is an
interesting carbonate (true) or an uninteresting background rock (false). It is reasonable
to guess that these variables are independent (even if they are not really independent,
we may model them that way because we do not know how they are correlated).

Any joint probability table (JPT) for the variables can be represented using an
ADD. The probability of a joint assignment of the variables can be read from the ADD
graph as follows:

1. Begin at the root.

2. Each time the graph branches on a variable, follow the right branch if the variable
is true and the left branch if it is false.

3. When a terminal node is reached, its value is the probability of the joint assign-
ment.

For example, suppose that the variables are independent withPr(X) = 1, Pr(Y ) =
0.5, andPr(Z) = 0.9. Fig. 5.1 shows two ADDs that represent this JPT. The ADD on
the left is a fully expanded tree. You can verify, for instance, that the rightmost terminal
node isPr(X) Pr(Y ) Pr(Z) = 0.45. The ADD on the right is incanonical form,
essentially meaning that the size of the graph has been minimized by sharing subgraphs
and eliminating useless branch points (how to canonicalize an ADD is beyond our
scope).

32



X

YY

Z Z Z Z

0 0 0 0.05 0.45 0.05 0.450

X

0 Z

0.05 0.45

Figure 5.1: Representations of the first example JPT: (left) fully expanded ADD, (right)
canonical ADD.

Note that simply listing the entries of the JPT in a vector would require eight entries,
but the ADD representation on the right has only five nodes: the ADD has succeeded
in compressing the JPT because many of its entries have the same value.

One may ask why we do not simply assume the variables are independent and
take a list of their marginal probabilities as our representation. The short answer is
that proving any kind of conditional independence between variables always holds in
a POMDP model requires unreasonably strong assumptions about the structure of the
model. However, we believe that a wider class of POMDP worlds spend most of their
time in beliefs with some conditional independence. Therefore, we are interested in a
representation that is both fully general and able to make use conditional independence
when it exists.

Now suppose the variables are independent withPr(X) = 0.9, Pr(Y ) = 0.3, and
Pr(Z) = 0.8. The canonical ADD for this representation is shown on the left in fig.
5.2. Note that despite the independence of the variables, there are no repeated entries
in the JPT, and no compression is achieved.

X

YY

Z Z Z Z

0.056 0.006 0.024 0.126 0.504 0.054 0.2160.014

X

1

Z

Y

0.1 0.9

0.7 0.3

0.2 0.8

Figure 5.2: Representations of the second example JPT: (left) canonical ADD, (right)
canonical PADD.

Our extension to the ADD framework, called the product ADD (PADD), is intended
to handle JPTs like this second example. PADDs are optimized to represent the multi-
plicative structure of a JPT with some conditional independence. The canonical PADD
for the second example is shown on the right in fig. 5.2. A JPT entry is read from the
PADD as follows:

1. Begin at the root. Define a variable calledmultiplier and set it to 1.

33



2. Each time the graph branches on a variable, follow the right branch if the variable
is true and the left branch if it is false. Either way, multiply themultiplier by the
label on the branch followed.

3. When a terminal node is reached, the product ofmultiplier and the terminal node
value is the probability of the joint assignment.

Note that the PADD has succeeded in compressing the second example.5 It should be
clear, based on the definition and the example, that the size of the PADD representation
of a JPT scales linearly in the number of variables as long as complete independence
is maintained. PADDs also provide some compression in the presence of various kinds
of conditional independence.

The PADD multiplies by each branch label during descent through the graph. An
alternative extension, called the sum ADD (SADD), adds each branch label. SADDs
may provide a compact representation of theα vectors used in value iteration. Together,
PADDs and SADDs make up a class we call extended ADDs (EADDs).

Our preliminary analysis indicates that EADDs essentially dominate ADDs; the
number of nodes in an EADD is never larger than in the corresponding ADD, and it
may be exponentially smaller. Basic operations such as pointwise multiplication of two
JPTs are just as efficient (up to a constant factor) as the corresponding ADD operations
on graphs with the same structure.

We propose to study how PADD performance degrades as independence is lost,
how much independence is encountered in the beliefs of typical POMDP problems,
and whether use of EADDs to represent beliefs andα vectors can speed up POMDP
planning.

6 Contributions

The contributions of this thesis will come in two areas. First, we will develop an
overall architecture and planning module for one of the first rover SA systems. Our
work will be distinguished from comparable projects by the need to generate daily
plans that include several kilometers of traverse, and by the primary mission goal,
which is biology as opposed to geology (implying a different sensor suite). Second,
we will extend POMDP planning techniques and apply them to the SA domain for the
first time. We hope that the probabilistic models and algorithms we develop will both
improve the quality of SA plans and generalize to other planning domains.

7 Schedule

Summer 04

• Develop deterministic model for LITA domain.

5For this small case, the compression is not very dramatic, since there appear to be seven numbers stored
in the PADD representation, as opposed to eight naı̈vely. Larger examples see better compression. But note
also that the left and right labels at a branch point always sum to 1, so we can explicitly store one label and
infer the other.

34



• Develop planning module for 2004 expedition and a protocol for continuous
planning interaction with the executive.

Fall 04

• Join field operations team during the second LITA expedition (September-October)
and assist in analysis and write-up.

• Based on field experience with the deterministic model, develop POMDP models
of LITA domain.

• Study factored state and decide feasibility of incrementally adding POMDP model
elements to deterministic models.

Spring-Summer 05

• Study POMDP planning techniques.

• Develop planning module for 2005 expedition.

Fall 05

• Join field operations team during the third LITA expedition (September-November)
and assist in analysis and write-up.

Spring-Summer 06

• Study POMDP planning techniques.

• Test POMDP planner in simulation using field-validated probabilistic model of
the LITA domain.

• Complete written thesis and defend.

35



References

[Aberdeen, 2002] Aberdeen, D. (2002). A survey of approximate methods for solving
partially observable Markov decision processes. Technical report, Research School
of Information Science and Engineering, Australia National University.

[Astrom, 1965] Astrom, K. J. (1965). Optimal control of Markov decision processes
with incomplete state estimation.Journal of Mathematical Analysis and Applica-
tions, 10:174–205.

[Bagnell and Schneider, 2001] Bagnell, D. and Schneider, J. (2001). Autonomous he-
licopter control using reinforcement learning policy search methods. InProceedings
of the International Conference on Robotics and Automation. IEEE.

[Bahar et al., 1993] Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii,
E., Pardo, A., and Somenzi, F. (1993). Algebraic decision diagrams and their appli-
cations. InProc. of ICCAD.

[Barto et al., 1995] Barto, A., Bradtke, S., and Singh, S. (1995). Learning to act using
real-time dynamic programming.Artificial Intelligence, 72(1-2):81–138.

[Baxter and Bartlett, 2000] Baxter, J. and Bartlett, P. L. (2000). Reinforcement learn-
ing on POMDPs via direct gradient ascent. InICML.

[Bellman, 1957] Bellman, R. (1957).Dynamic Programming. Princeton University
Press, NJ.

[Bonasso, 1991] Bonasso, R. P. (1991). Integrating reaction plans and layered compe-
tences through synchronous control. InProc. of IJCAI.

[Boutilier et al., 1998] Boutilier, C., Brafman, R. I., and Geib, C. W. (1998). Struc-
tured reachability analysis for markov decision processes. InProc. of UAI, pages
24–32.

[Brafman, 1997] Brafman, R. I. (1997). A heuristic variable grid solution method for
POMDPs. InProc. of AAAI.

[Bryant, 1986] Bryant, R. (1986). Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691.

[Cabrol et al., 2001] Cabrol, N. A., Chong-Diaz, G., Stoker, C. R., Gulick, V. C.,
Landheim, R., Lee, P., Roush, T. L., Zent, A. P., Lameli, C. H., Iglesia, A. J., Ar-
rerondo, M. P., Dohm, J. M., Keaten, R., Wettergreen, D., Sims, M., Pedersen, L.,
Bettis, A., Thomas, G., and Witzke, B. (2001). Nomad rover field experiment, Ata-
cama Desert, Chile, 1, science results overview.J. Geophys. Res., 106(E4):7785.

[Cassandra et al., 1997] Cassandra, A., Littman, M., and Zhang, N. (1997). Incremen-
tal pruning: A simple, fast, exact method for partially observable Markov decision
processes. InProc. of UAI.

36



[Cassandra et al., 1996] Cassandra, A. R., Kaelbling, L., and Kurien, J. A. (1996).
Acting under uncertainty: Discrete bayesian models for mobile-robot navigation. In
Proc. of IROS.

[Cassandra et al., 1994] Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994).
Acting optimally in partially observable stochastic domains. InProceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 2, pages
1023–1028, Seattle, Washington, USA. AAAI Press/MIT Press.

[Castãno et al., 2003] Castaño, R., Anderson, R. C., Estlin, T., DeCoste, D., Fisher, F.,
Gaines, D., Mazzoni, D., and Judd, M. (2003). Rover traverse science for increased
mission science return. InProc. of IEEE Aerospace, Big Sky, Montana.

[Cheeseman and Stutz, 1996] Cheeseman, P. and Stutz, J. (1996). Bayesian classifi-
cation (AutoClass): Theory and results. In Fayyad, U. M., Piatetsky-Shapiro, G.,
Smyth, P., and Uthurusamy, R., editors,Advances in Knowledge Discovery and Data
Mining. AAAI Press/MIT Press.

[Chien et al., 2003] Chien, S., Sherwood, R., Tran, D., Castaño, R., Cichy, B., Davies,
A., Rabideau, G., Tang, N., Burl, M., Mandl, D., Frye, S., Hingemihle, J.,
D’Augustino, J., Bote, R., Trout, B., Schulman, S., Ungar, S., Gaasback, J. V.,
Boyer, D., Griffin, M., Burke, H., Greeley, R., Doggett, T., Williams, K., Baker,
V., and Dohm, J. (2003). Autonomous science on the EO-1 mission. InProc. of
iSAIRAS, Nara, Japan.

[Choset, 2001] Choset, H. (2001). Coverage for robotics—a survey of recent results.
Annals of Mathematics and Artificial Intelligence, 31:113–126.

[Dearden and Boutilier, 1994] Dearden, R. and Boutilier, C. (1994). Integrating plan-
ning and execution in stochastic domains. InProc. of the AAAI Spring Symposium
on Decision Theoretic Planning, pages 55–61, Stanford, CA.

[Dearden et al., 2003] Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., and
Washington, R. (2003). Incremental contingency planning. InProc. of ICAPS Work-
shop on Planning under Uncertainty.

[Estlin et al., 2003] Estlin, T., Castaño, R., Anderson, B., Gaines, D., Fisher, F., and
Judd, M. (2003). Learning and planning for mars rover science. InProc. of IJCAI
Workshop on Issues in Designing Physical Agents for Dynamic Real-Time Envi-
ronments: World Modeling, Planning, Learning, and Communicating, Acapulco,
Mexico.

[Estlin et al., 2002] Estlin, T., Fisher, F., Gaines, D., Chouinard, C., Schaffer, S., and
Nesnas, I. (2002). Continuous planning and execution for an autonomous rover. In
Proc. of the International NASA Workshop on Planning and Scheduling for Space,
Houston, TX.

[Estlin and Gaines, 2002] Estlin, T. and Gaines, D. (2002). An optimization frame-
work for interdependent planning goals. InProc. of the AIPS Workshop for Planning
and Scheduling with Multiple Criteria, Toulouse, France.

37



[Estlin et al., 1999] Estlin, T. A., Mann, T. P., Gray, A. G., Rabideau, G., Castaño,
R., Chien, S., and Mjolsness, E. D. (1999). An integrated system for multi-rover
scientific exploration. InAAAI.

[Firby, 1989] Firby, R. J. (1989).Adaptive Execution in Dynamic Domains. PhD
thesis, Yale University. YALEU/CSD/RR#672.

[Gazis and Roush, 2001] Gazis, P. R. and Roush, T. (2001). Autonomous identifica-
tion of carbonates using near-IR reflectance spectra during the February 1999 Mar-
sokhod field tests.J. Geophys. Res., 106(E4):7765.

[Geffner and Bonet, 1998] Geffner, H. and Bonet, B. (1998). Solving large POMDPs
by real time dynamic programming. InWorking Notes Fall AAAI Symposium on
POMDPs.

[Gulick et al., 2000] Gulick, V. C., Morris, R. L., Bandari, E. B., and Roush, T. L.
(2000). Maximizing science return from future Mars missions with onboard image
analyses. InProc. of Lunar and Planetary Science, Lunar and Planetary Institute,
Houston.

[Gulick et al., 2001] Gulick, V. C., Morris, R. L., Ruzon, M. A., and Roush, T. L.
(2001). Autonomous image analyses during the 1999 Marsokhod rover field test.J.
Geophys. Res., 106(E4):7745.

[Hansen, 1998] Hansen, E. (1998). Solving POMDPs by searching in policy space. In
Proc. of UAI, Madison, Wisconsin.

[Hansen and Zilberstein, 2001] Hansen, E. and Zilberstein, S. (2001). LAO*: A
heuristic search algorithm that finds solutions with loops.Artificial Intelligence,
129:35–62.

[Hauskrecht, 1997] Hauskrecht, M. (1997). Incremental methods for computing
bounds in partially observable Markov decision processes. InProc. of AAAI, pages
734–739, Providence, RI.

[Hauskrecht, 2000] Hauskrecht, M. (2000). Value-function approximations for par-
tially observable Markov decision processes.Journal of Artificial Intelligence Re-
search, 13:33–94.

[Hoey et al., 1999] Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). SPUDD:
Stochastic planning using decision diagrams. InProc. of UAI, pages 279–288.

[Howard, 1960] Howard, R. A. (1960).Dynamic Programming and Markov Pro-
cesses. MIT.

[Kaelbling, 1993] Kaelbling, L. P. (1993).Learning in Embedded Systems. The MIT
Press.

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic domains.Artificial Intelli-
gence, 101:99–134.

38



[Littman, 1994] Littman, M. L. (1994). The witness algorithm: Solving partially ob-
servable Markov decision processes. Technical Report CS-94-40, Brown University,
Providence, RI.

[Littman, 1996] Littman, M. L. (1996).Algorithms for Sequential Decision Making.
PhD thesis, Brown University.

[Maimone et al., 1999] Maimone, M., Nesnas, I. A. D., and Das, H. (1999). Au-
tonomous rock tracking and acquisition from a Mars rover. InProc. of iSAIRAS,
pages 329–334, Noordwijk, The Netherlands.

[Moorehead, 2001] Moorehead, S. (2001).Autonomous Surface Exploration for Mo-
bile Robots. PhD thesis, Robotics Institute, Carnegie Mellon University. CMU-RI-
TR-01-30.

[Nourbakhsh, 1997] Nourbakhsh, I. (1997).Interleaving Planning and Execution for
Autonomous Robots. Kluwer Academic Publishers.

[Pedersen, 2000] Pedersen, L. (2000).Robotic Rock Classification and Autonomous
Exploration. PhD thesis, Robotics Institute, Carnegie Mellon University. CMU-RI-
TR-01-14.

[Pedersen et al., 2003a] Pedersen, L., Bualat, M., Kunz, C., Lee, S., Sargent, R.,
Washington, R., and Wright, A. (2003a). Instrument deployment for Mars rovers.
In Proc. of ICRA, pages 2535–2542.

[Pedersen et al., 2003b] Pedersen, L., Bualat, M., Lees, D., Smith, D., and Washing-
ton, R. (2003b). Integrated demonstration of instrument placement, robust execution
and contingency planning. InProc. of iSAIRAS, Nara, Japan.

[Pedersen et al., 2001] Pedersen, L., Wagner, M. D., Apostolopoulos, D., and Whit-
taker, W. L. (2001). Autonomous robotic meteorite identification in Antarctica. In
Proc. of International Conference on Robotics and Automation, pages 4158–4165.

[Pineau et al., 2003] Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value
iteration: an anytime algorithm for POMDPs. InIJCAI.

[Poon, 2001] Poon, K.-M. (2001). A fast heuristic algorithm for decision-theoretic
planning. Master’s thesis, The Hong Kong University of Science and Technology.

[Shillcutt, 2000] Shillcutt, K. (2000).Solar Based Navigation for Robotic Explorers.
PhD thesis, Robotics Institute, Carnegie Mellon University. CMU-RI-TR-00-25.

[Simmons and Koenig, 1995] Simmons, R. and Koenig, S. (1995). Probabilistic robot
navigation in partially observable environments. InProc. of IJCAI, pages 1080–
1087.

[Smith, 2003] Smith, T. (2003). Science autonomy in the Atacama. InProc. of ICML.

39



[Smith and Simmons, 2004] Smith, T. and Simmons, R. (2004). Heuristic search value
iteration for POMDPs. InProc. of UAI. (to appear; a companion technical report
with more detailed theoretical analysis is currently in preparation).

[Sondik, 1971] Sondik, E. J. (1971).The optimal control of partially observable
Markov processes. PhD thesis, Stanford University.

[St-Aubin et al., 2000] St-Aubin, R., Hoey, J., and Boutilier, C. (2000). APRICODD:
Approximate policy construction using decision diagrams. InProc. of NIPS, pages
1089–1095, Denver, CO.

[Thrun, 2000] Thrun, S. (2000). Monte carlo POMDPs. InProc. of NIPS, pages 1064–
1070. MIT Press.

[Tompkins et al., 2002] Tompkins, P., Stentz, A., and Whittaker, W. L. (2002). Mis-
sion planning for the sun-synchronous navigation field experiment. InProc. of In-
ternational Conference on Robotics and Automation.

[Tompkins et al., 2004] Tompkins, P., Stentz, A. T., and Whittaker, W. R. L. (2004).
Field experiments in mission-level path execution and re-planning. InProceedings
of the 8th Conference on Intelligent Autonomous Systems (IAS-8).

[Urmson et al., 2002] Urmson, C., Dias, M. B., and Simmons, R. (2002). Stereo vision
based navigation for sun-synchronous exploration. InProc. of IROS.

[Wagner et al., 2001] Wagner, M. D., Apostolopoulos, D., Shillcutt, K., Shamah, B.,
Simmons, R., and Whittaker, W. L. (2001). The science autonomy system of the
Nomad robot. InProc. of International Conference on Robotics and Automation,
pages 1742–1749.

[Washington, 1997] Washington, R. (1997). BI-POMDP: Bounded, incremental,
partially-observable Markov-model planning. InProc. of European Conf. on Plan-
ning (ECP), Toulouse, France.

[Wettergreen et al., 2003] Wettergreen, D., Cabrol, N., Calderón, F., Jonak, D.,
Lüders, A., Pederson, K., Shaw, F., Smith, T., Strelow, D., Teza, J., Tompkins,
P., Urmson, C., Verma, V., and Wagner, M. (2003). Life in the Atacama field season
2003: Experiment plans and technical results. Technical Report CMU-RI-TR-03-
50, Robotics Institute, Carnegie Mellon University.

[Zhang and Zhang, 2001] Zhang, N. L. and Zhang, W. (2001). Speeding up the con-
vergence of value iteration in partially observable Markov decision processes.Jour-
nal of AI Research, 14:29–51.

40


