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Abstract—Future Mars rovers will have the ability to au-
tonomously navigate for distances of kilometers. In one sol
a traverse may take a rover into unexplored areas beyond its
local horizon. Naturally, scientists cannot specify particular
targets for the rover in an area they have not yet seen. This pa-
per analyzes what theycanspecify: priorities that provide the
rover with enough information to autonomously select sci-
ence targets using its onboard sensing. Several autonomous
science operational modes and priority types are discussed.
We also introduce a science priority language. A team of sci-
entists was asked to use the language in specifying targets for
a tele-operated rover, and qualitative results are reported.
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1. INTRODUCTION

Future Mars rovers will have the ability to autonomously nav-
igate for distances of kilometers. At these scales, a day’s tra-
verse takes the rover into unexplored areas over its local hori-
zon. Naturally, scientists cannot specify particular targets for
the rover in an area they have not yet seen. This paper ana-
lyzes what theycanspecify: priorities that provide the rover
with enough information to autonomously select science tar-
gets using its onboard sensing.

We aim to developscience autonomy(SA), the ability of a
rover to reason about science goals and the science data it
collects in order to make more effective decisions and im-
prove the quality of science data return. Planetary rovers have
limited resources for sampling their surroundings and limited
downlink bandwidth for returning the data—we want every
sample to count.
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The simplest use of SA isselective data return, in which the
rover moves and studies its surroundings as usual (without an-
alyzing incoming science data in real time), and then makes
decisions about what subset to download at its next commu-
nication window. Selective data return presents minimal mis-
sion risk—the SA technology only selects what data to down-
load, and in case of errors any important data that was passed
over may later be recoverable from the rover’s onboard stor-
age.

A more challenging and potentially more rewarding approach
is active science autonomy, in which the rover reacts to in-
coming science data by selectively applying its sensors and
possibly moving to features of interest. This approach makes
new operational modes available to the science team. For in-
stance, in thescience on the flymode the rover would oppor-
tunistically sample interesting features observed during long
traverses. In theintelligent site surveymode the rover would
characterize a site, choosing its coverage and sampling strate-
gies in order to assemble a useful summary of what is present.
We discuss these new operational modes in terms of their po-
tential benefits and technical challenges.

In order for the rover to selectively sample features of inter-
est, it must have some onboard representation of scientist pri-
orities. Some types of priorities includetarget signatures,
which prioritize a particular class of features (e.g. “sedimen-
tary rocks”), andrepresentative sampling, which prioritizes a
variety of samples so that there is a sample to represent each
class of feature [3]. One way to represent science priorities is
using a value function that scores possible returned data sets,
allowing them to be ordered from most to least preferred. We
introduce a language for specifying this value function. A
team of scientists was asked to use the language in specify-
ing targets for a tele-operated rover, and qualitative results are
reported.

2. SCIENCE AUTONOMY OPERATIONAL MODES

Expanded rover mobility has become technically feasible
only recently, and operations strategies have not yet fully
adapted. In some rover field tests, the science team has under-
used the mobility of the rover [2]. Nonetheless, a straightfor-
ward operations approach is emerging, which we callbase-
line high-mobility operations. Using this approach, the sci-
ence team selects interesting sites in orbital imagery and can
direct the rover to travel long distances and visit multiple



sites per day. The rover’s time is split between the follow-
ing modes:

• Directed sampling:The science team gives the rover spe-
cific local targets based on data from previous downlinks.
• Periodic traverse sampling:While traveling between inter-
esting sites, the rover takes periodic samples.
• Periodic site survey:When the rover reaches an interesting
site, it follows a coverage pattern and takes periodic samples.
This data constitutes a preliminary survey, and the science
team can follow up with directed sampling as necessary.

Our proposal for structuring active SA is to add new modes
that extend baseline high-mobility operations. Some modes
under consideration are the following (in order from least to
most advanced):

• Science on the fly:While traveling between sites, the rover
watches for potential science targets. It uses priorities pro-
vided by the science team to decide whether it is worthwhile
to delay its traverse in order to perform follow-up observa-
tions, such as taking a spectrometer reading or visiting the
target and using contact sensors.
• Intelligent site survey:When the rover reaches an interest-
ing site, it moves around the site using an exploration strategy
that balances coverage with selective sampling based on sci-
entist priorities. This data constitutes a preliminary survey,
and the science team can follow up with directed sampling as
necessary.
• Science-aware path following:The rover follows a path
defined by science features. Examples include the margin of
a dry riverbed or crater, or evaporite deposits that mark an
ancient shoreline.
• Science-aware region mapping:The rover identifies areas
with uniform science properties and attempts to find their
boundaries, in order to determine extent and generate a map.
Example areas are geological units and habitats defined by
the presence or absence of particular organisms.

In order to decide where to focus our development effort, we
can measure each mode according to several criteria:

1. Broad applicability: It should be applicable under cir-
cumstances that are commonly encountered in mission op-
erations.
2. Efficiency enhancement:It should provide more useful
science data than the comparable baseline strategy given the
same resource investment (in terms of energy, time, data vol-
ume, and operator attention).
3. Ease of migration: It should not be a “disruptive tech-
nology”. It should integrate easily with existing systems and
require minimal retraining for the science team.
4. Testability: There should be clear performance criteria,
and it should be straightforward to compare performance with
the baseline strategy.
5. Feasibility: It should be technically feasible to develop.

We believe that all four of the SA operational modes de-
scribed earlier have broad applicability and good potential to
enhance efficiency, although this is difficult to determinea
priori and would best be analyzed through tests in the field.

However, science on the fly and intelligent site survey have a
clear advantage in terms of ease of migration. They are es-
sentially drop-in replacements for periodic traverse sampling
and periodic site survey. The science team can specify daily
activities just as they would in the baseline strategy, then “flip
the switch” to use SA operational modes where appropriate.
(Of course, there is additional effort, such as specifying prior-
ities, which is discussed later.) The fact that these modes have
corresponding baseline modes also improves testability. We
can use existing performance metrics for the baseline modes,
and easily compare results. For these reasons, our SA de-
velopment focuses on science on the fly and intelligent site
survey.

3. SCIENCE PRIORITY SPECIFICATION

In order for the rover to selectively sample features of inter-
est, it must have some onboard representation of scientist pri-
orities. We suggest an SA architecture that cleanly separates
priority specification (a scientific question) from rover con-
trol strategies that implement the priorities (an engineering
problem).

Separating priority specification from rover control strategy
has advantages in terms of evaluation. Our overall goal in
designing SA systems is to help the rover and science team
together gain a more complete and accurate scientific under-
standing. The corresponding evaluation methodology would
aim to measure how scientific accuracy varies as SA system
parameters are tuned. For example, we could design an ex-
periment in which two teams of scientists use a rover to study
the same site, each time with different SA system parame-
ters, and compare the accuracy of the two sets of conclusions
(relative to ground truth).

This overall evaluation methodology directly addresses the
goal of improving scientific understanding, but it is difficult
to implement. First, how do we quantitatively measure the ac-
curacy of scientific conclusions relative to ground truth? Be-
cause the conclusions are generally very unstructured, com-
parisons are difficult [9]. Second, experiments are difficult
to control. The site must be continually varied because the
science team can only get a fresh look at each site once; af-
ter that, the experiment is compromised by their prior knowl-
edge. Finally, it is logistically difficult to assemble a group of
scientists for repeated experiments. For these reasons, over-
all evaluation is complicated and likely to yield ambiguous
results.

However, cleanly separating science priority specification
from rover control strategy allows us to evaluate them sep-
arately. In particular, we can vary the rover control strategy
and calculate the score of the returned data set according to



the specified priorities. This experiment can be performed
multiple times at the same site without repeated involvement
from scientists.

Having motivated the notion of an explicit priority represen-
tation, we can ask what form it should take. In designing
our language, we considered several design criteria. They are
listed here in order from most to least important:

1. Simple: The language should be simple to interpret on-
board the rover and easy for the scientists to use (with the
appropriate supporting interface).
2. Expressive:The language should be flexible enough to ex-
press a range of scientist intentions, including:
(a) Target signatures:Prioritizes particular classes of fea-

tures, such as “white rocks”.
(b) Novelty detection:Prioritizes features that are unlike

any previously encountered.
(c) Representative sampling:Prioritizes a variety of data so

that there is a sample to represent each class of feature present
at a site.
3. Maintainable: It should be easy to understand, reuse, and
modify priority specifications. Scientists should not need to
start from scratch every time they want to tune the priorities.
4. Autonomy compatible:The specification should be com-
patible with the underlying science data understanding mech-
anism.

Figure 1. Operational mode sketches: (top) science on the
fly with novelty detection, (bottom) intelligent site survey

with representative sampling.

A number of schemes have been proposed for prioritizing sci-
ence activities. During its Antarctic meteorite search, the No-
mad robot focused on the single task of classifying rocks as
meteorite/non-meteorite [8]. Active selection of the appro-
priate sensor to use on a rock relied on an estimate of infor-
mation gain in the classification. The MISUS system simu-
lated multiple rovers exploring an environment and classify-
ing rocks into clusters based on their spectral characteristics
[4]. Observations were preferred if they were likely to im-
prove the accuracy of the clustering model. Neither of these
representations offered the scientists detailed control over pri-

orities. The closest representation to ours was developed by
the OASIS project [3]. We have adopted their priority con-
cepts (target signatures, etc.) as well as their approach of
working closely with a science team. Our representation ex-
tends theirs by (1) providing a more flexible way to specify
classes of features and (2) clarifying certain issues, such as
how to use the various priority concepts together at the same
time, and how to provide control over the bandwidth alloca-
tion.

Abstractly, we represent priorities with a value function that
scores possible returned data sets, allowing them to be ranked
from most to least preferred. A set of target signatures forms
the core of the function representation. Each time a sample in
the data set matches a target signature, the value of the data
set is incremented. Novelty detection and representative sam-
pling are discussed later—they are supported by a mechanism
for automatically adding new target signatures to the set.

The representation must provide careful control over alloca-
tion of downlink data volume, since it is often a scarce re-
source. For example, given enough volume for 10 images,
the science team might want 5 to target white rocks and 5 to
target angular rocks. Unfortunately, allocation is complicated
when the requested samples are to be found in unexplored ar-
eas. There might not be enough features of a given type to
fill the request, or unexpected interesting features might need
to be included, reducing space available to the original allo-
cation. Lacking any special insight into how to handle this
issue, we decided on a simplequantity discountmechanism.
Scientists can specify a reward and a quantity cap for each
target signature. Samples matching a high reward signature
are preferred until the signature’s quantity cap is reached.

Some samples in a data set are primarily useful for demon-
strating the existence of a particular type of feature at a site.
For this purpose, only one sample of that type of feature is
needed; multiple samples at the same site would be redun-
dant. To capture this idea, we provide theneighbor discount,
which prevents the same target signature from matching two
samples that are too close together.

Formally, each target signaturet in the function represen-
tation consists of (1) a matching criterionmatch(t, ·) stat-
ing what samples in a data set match the signature, (2) a re-
ward reward(t) to be added to the overall value of the data
set when the signature fires, and (3) additional parameters
nthreshold(t) andqthreshold(t) described below.

The overall value functionV is defined to be

V (D) =
n∑

i=1

∑
t∈T

match(t, di)V (t, di | d1, . . . , di−1), (1)

where D is the overall data set consisting of samples
{d1, . . . , dn}. We number the samples (rather arbitrarily) in
order by the time they were taken.T is the set of target sig-
natures.match(t, d) ranges from 0 to 1, 1 meaning that sig-



naturet is a perfect match for sampled. Note that this formu-
lation allows multiple signatures to match and fire for each
sample. The value of each sample/signature pair is condi-
tioned on prior samples as follows:

V (t, di | d1, . . . , di−1) = qdiscount(t | d1, . . . , di−1)
ndiscount(t, di | d1, . . . , di−1)
reward(t), (2)

where one sees the two types of discounting:

• Quantity discount:Each signature is constrained to match
only a certain proportion of the samples in the data set. The
quantity discount factorqdiscount(t | d1, . . . , di−1) is 0 if
among the prior samplesd1, . . . , di−1 there arek samples
that match signaturet, with k/|D| ≥ qthreshold(t). The
discount factor is 1 otherwise.
• Neighbor discount: The sample is discounted if it
is not locally unique. The neighbor discount factor
ndiscount(t, di | d1, . . . , di−1) is 0 if one of the prior sam-
plesd1, . . . , di−1 both matches signaturet and is within dis-
tancenthreshold(t) of the current sampledi. The discount
factor is 1 otherwise.1

Matching Samples to Target Signatures

This section discusses what constitutes a sample, and how
we determine the quality of match between a sample and a
target signature. Broadly defined, a sample could mean any
kind of data: a spectrum, an image, a particular part of an
image, or an assemblage from multiple sensors (such as an
image mosaic with associated spectral information). Samples
are matched to target signatures based on their measurable
attributes, which fall broadly into three categories:

• Meta-data attributes: Attributes that describe the data
product itself, such as the type of instrument used, the res-
olution, or the exposure time.
• Viewing conditions:Attributes such as ambient light levels
or the distance of a camera from what it is viewing.
• Target attributes:Attributes such as the number and type of
rocks present, distribution of soil types, or presence of micro-
organisms.

For the remainder of this paper (in accord with our experi-
ments), we restrict a sample to mean a fixed assemblage of
data products that provide a summary of the patch of terrain
around a single rover location, roughly5×5 meters. Because
the same data products are always included in a sample, all
samples have identical meta-data attributes and similar view-
ing conditions. As a result, our discussion focuses on tar-
get attributes, and our goal is to specify target signatures that
match based on attributes of a patch of terrain. In particu-
lar, we focus on the rocks and soil present in a terrain patch.
Each patch is broken up into discrete features such as individ-
ual rocks.

1Note that both types of discounting use a threshold function for simplic-
ity; it may be that some class of smooth functions is more appropriate.

Formally, the matching criterion for each target signature
consists of (1) afeature classdefined in terms of measurable
attributes of a feature (such as albedo of an individual rock),
and (2) a threshold density of features in the patch that must
be members of the feature class in order for the patch to match
the target signature. For rocks, the threshold density can be
measured in rocks per unit area or as a proportion of the total
number of rocks present. For soil, the density is measured as
a proportion of total area.

Membership of features in feature classes need not be all-or-
nothing. We allow for partial membership (scores ranging
from 0 to 1), and when matching a patch to a target signature,
the sum of the membership scores in the signature’s feature
class is the figure of merit that we compare to the signature’s
density threshold. Although it is not necessary, we find it
convenient to make the feature classes exclusive in the sense
that the membership scores for a feature across all classes
must sum to 1. This allows the scores to be thought of as a
probabilistic classification.

Now, given a featuref , we want to define its membership
score with respect to a classc. The decision must be based
on what we know aboutf : we assume there is a setX of
discrete or real-valued attributes, such that for every feature
f and attributex we have a measurementvalue(f, x). For
example, a rock has measurable attributes like size, albedo,
and angularity. We define a classc with a membership func-
tion member(c, f) that takes the measured attributes off as
inputs and outputs a score ranging from 0 to 1.

The membership function is represented as the conjunction
of intervals. Each classc has an interval for every attributex,
with specified boundsmin(c, x) andmax(c, x). The interval
can be open-ended on either or both ends if bounds of±∞
are specified. The overall membership score is

member(c, f) = α
∏
x∈X

member(c, f, x), (3)

wheremember(c, f, x) is 1 whenmin(c, x) ≤ value(f, x) ≤
max(c, x), and 0 otherwise.α is a normalizing constant.

This scheme of specifying numerical bounds has strengths
and weaknesses. It is most appropriate for what we call
hypothesis-driven science, in which scientists command rover
actions based on specific prior hypotheses about a site. For
instance, before our recent field expedition, members of our
science team hypothesized that we would find photosynthetic
endoliths in large translucent rocks that are easily recognized
because of their high albedo. This translates directly to a class
of “all rocks with albedo> 0.9 and size> 10 cm.” Although
disjunctions such as “all rocks with size> 10 cmor angular-
ity > 0.5” cannot be stated directly, they can be captured if
necessary by specifying multiple target signatures.

However, numerical bounds are less natural fordata-driven
science, in which rover commands are based on interesting



features in the data that may or may not be associated with
specific hypotheses. An example is the mineral “blueberries”
discovered by the MER rovers, considered to be evidence of
past water [5]. Their existence was not predicted in advance,
but once they were discovered, it was important to follow the
data and search for them in subsequent observations. An ef-
fective SA system should make it easy to adjust priorities
based on new data so that spontaneous ideas from the sci-
ence team are more likely to be captured and used onboard
the rover.

Data-driven classes of interest are more naturally expressed in
terms ofin situ examples: “rocks like these three that we ob-
served yesterday.” This is also convenient from the perspec-
tive of onboard science data understanding. Human subjec-
tive judgment is poor for specifying precise thresholds, and
examples from the lab tend to differ from those in the field in
a variety of ways, such as ambient lighting and the distribu-
tion of sample types.In situ examples should generally lead
to more robust classification. Another advantage is that auto-
matic clustering algorithms can naturally express their classes
in terms of examples, making it easy to use manual and auto-
generated classes side by side with the same representation.

In order to support both numerical and example-based rep-
resentations, we extend the class representation in two ways:
(1) we allow sets of positive and negative examples to option-
ally be specified, and (2) the interval for any attributex can
be left unspecified, allowing the SA system to automatically
select a attribute membership functionmember(c, f, x) so as
to optimize inclusion of positive examples and exclusion of
negative examples. We intentionally leave the details of the
optimization algorithm open so that the language is neutral
across algorithms. The algorithm may optimize additional
criteria, for instance minimizing overlap between classes, and
the class of functions it considers need not be restricted to
intervals. We present a companion paper at this conference
that discusses Gaussian attribute membership functions and
an expectation-maximization algorithm for optimization [10].

Finally, the priority language should be able to express nov-
elty detection and representative sampling preferences. Our
approach assumes the presence of an automatic clustering
scheme that identifies new classes of features in the rover’s
science data.2 We extend the specification by allowing scien-
tists to specifysignature templates, which state how to react
when a new class is identified—a template creates a new im-
plicit target signature and adds it to the signatures already
specified by scientists. Specifying the template means speci-
fying the parameters (priority,nthreshold, etc.) of the signa-
tures it should generate.

We provide the ability to specify two templates, one for nov-
elty detection and one for representative sampling. The nov-
elty detection template (which we expect to have a higher

2Automatic clustering schemes for SA are discussed in our companion
paper.

priority) creates a signature when a novel class is first iden-
tified onboard the rover. Later, after each interaction with
the science team, the novel classes from that command cycle
“graduate”: the scientists can explicitly specify a signature
involving that class, or, if they choose not to, the signature
generated by the novelty detection template is replaced with
one generated by the representative sampling template.

Overall, our priority language attempts to provide a balance
across design criteria. In some places we have made speci-
fications more maintainable at the cost of some expressivity.
For instance, the effect of a rule is an additive term indepen-
dent of other rules in the set. This independence limits the
language but makes it easier to edit rules without concern for
complex interactions. A range of priority concepts are sup-
ported, including target signatures, representative sampling,
and novelty detection. And in support of autonomy integra-
tion, the extended class representation supports both manual
tuning of classes and compatibility with automatic clustering
algorithms.

4. EXPERIMENTAL PROCEDURE

Our SA research is associated with the Life in the Atacama
project, an effort to study the limits of life in the Atacama
Desert of Chile, one of the driest places on Earth. By deploy-
ing a rover there we seek insights into how organisms adapt
to extreme environments and how to study them with a rover
under Mars-relevant operational constraints.

Fig. 2 shows our Zöe rover and its sensor configuration. Zoë
is a solar-powered rover approximately 2 meters long and
able to navigate autonomously over kilometer-scale distances
at a maximum speed of about 2 km/hour. It has a suite of
science instruments designed to support geology and biology
studies:

• Stereo Panoramic Imager (SPI):A stereo triple of color
cameras mounted on a pan/tilt unit. Each has a21o field of
view and a 1024x768 CCD, providing angular resolution sim-
ilar to the human eye. The SPI is primarily used to capture
panoramic mosaics that provide the scientists with visual con-
text for understanding a site.
• Vis/NIR spectrometer:A visible/near-infrared reflectance
spectrometer. Light is gathered with a 1o field of view fore-
optic mounted on the pan/tilt unit and aligned with the SPI
optical axis. The spectrometer is primarily used to character-
ize minerals.
• NavCams:A stereo pair of color cameras. Each camera has
a 60o field of view and a 1024x768 CCD. They are fixed to
a mast rising from the front axle of the robot. Since the front
axle can be steered left or right±15o, the camera pointing can
be controlled in a gross sense. The tilt angle is fixed so that
the cameras view an area about 1-10 m in front of the robot.
The NavCams are primarily used for obstacle avoidance.
• Fluorescence imager (FI):The FI is an imaging system
comprised of a flash lamp, color filters, and a cooled CCD.
It can detect chlorophyll directly, and can also detect protein



Figure 2. Zoë rover: (top) deployed in the Atacama desert,
(bottom) sensor configuration.

and DNA when used with fluorescent indicator dyes. The FI
points down from the belly of the rover with a10×10 cm field
of view. It is the rover’s primary instrument for characterizing
and unambiguously confirming the presence of life.
• WorkspaceCams:A stereo pair of color cameras mounted
on the belly of the robot and aimed forward. Each camera has
a 94o field of view. The WorkspaceCams are primarily used
to provide context that supports interpretation of FI images.

The Atacama investigation has three planned rover expedi-
tions to the Atacama in 2003, 2004, and 2005. For the re-
cently completed 2004 expedition, we did not have a com-
plete SA system implementation, but we took advantage of
the field deployment by conducting tests designed to guide
the design of our SA system, which should be ready to use
onboard in 2005.

This section describes one test in particular, thehuman-
onboardexperiment. A team of scientists was asked to use
our language to specify their science priorities for a particu-
lar site. The priorities were then passed on to a human op-

erator who was given fixed resource constraints (downlink
bandwidth and distance traveled) and asked to choose rover
actions so as to return the best possible data set according to
the specified priorities. The idea is that the human operator
simulates an onboard SA system in the intelligent site sur-
vey operational mode—the operator can freely examine all
incoming rover data and can send commands in real time, but
only a small subset of the data can be downloaded at the end
of the run. human-onboard performance was compared to a
simple periodic sampling strategy, and evaluated according to
the specified priority value function. The human-onboard test
was intended to achieve several goals:

1. Priority language:It should provide feedback from scien-
tists as to whether our priority language is sufficiently usable
and expressive. Also, any ambiguities in the language should
be exposed by the human operator or during post-experiment
performance evaluation.
2. Sampling strategy:It should inform us about how a person
constrained to use rover sensing makes decisions about sci-
ence actions. This information can guide SA software design
and suggest changes to the rover configuration (e.g., camera
position and field of view).
3. Performance bound:The human operator should perform
better than any SA system that can be developed in the near
term, so evaluating the human-onboard performance might
be considered an upper bound on active science autonomy
performance—with the caveat that performance is strongly
affected by the specifics of our experiment, such as the se-
lected field site and characteristics of the rover.

Our original intent was to allow the human operator to make
decisions about sensing in the local area around the rover.
For instance, using a SPI image to pick out an individual rock
that matches a target signature, the operator could command a
follow-up spectrometer reading using the pan/tilt unit to point
the spectrometer, or the rover could be commanded to roll
over the rock and deploy the FI. Unfortunately, the onboard
software for precision pointing and motion was not ready to
handle these tasks. Also, time constraints on the availability
of the rover forced us to keep the operator’s task as simple as
possible.

As a result, we restricted the operator to make fewer decisions
at a larger scale. Motion commands were constrained to work
at a coarse resolution (on the order of 5 meters minimum dis-
tance), and sampling was reduced to a binary decision: at
each rover location, collect either no data or a fixed set of data
products. A preview command was also provided—this en-
abled the operator to quickly get a sense of what was present
at a location and decide whether a sample there was justified.

We performed three human-onboard runs, designated A, B,
and C. For run A, we asked the scientists to provide target
signatures only, meaning no novelty detection or representa-
tive sampling signature templates were used. For runs B and
C, we went to the other extreme, usingonlya single signature
template that assigned a uniform priority to each new feature



class as it was discovered. Fig. 3 provides basic statistics
about the runs, and fig. 4 shows the rover’s path and actions
during an example run. For each run, the human operator
was nominally allocated 300 meters of total rover travel and
6 samples, but all three runs were ended early due to time
pressure.

Run Distance Traveled (m) # Previews # Samples
A 200 8 2
B 226 8 4
C 260 9 4

Figure 3. Summary of experimental runs.
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Figure 4. Rover path/actions for run B (distances in meters).

In order to provide a performance comparison, we also con-
ducted a 300 meter periodic sampling transect at each human-
onboard study site. For each periodic transect the rover was
initially located at the same starting point used for the human-
onboard run and pointed in an arbitrary direction that ap-
peared traversable. From there the rover traveled forward in
a straight line, taking a total of 6 samples evenly spaced at 60
meter intervals.

5. EXPERIMENTAL RESULTS

The human-onboard experiment achieved the first two of its
three goals. We obtained feedback from scientists about the
usability of the priority language, and we gained a better
understanding of human operator sampling strategy for this
problem. However, the small number of runs and irregular-
ities in the experimental protocol prevent us from making a
meaningful quantitative comparison between human-onboard
operation and periodic sampling. As a result, we focus on
qualitative observations.

Scientist Priority Specification

Fig. 5 shows the rock target signatures specified for run A
by our science team. The scientists generated the signatures
in a discussion facilitated by one of us (Thompson). Overall

they reported that the language made sense, and they were
able to construct a fairly rich set of priorities. However, their
difficulties with certain parts of the process are instructive.

First, the scientists expressed uncertainty about how to set
the nthreshold andqthreshold parameters. Although they
clearly understood the objective of allocating bandwidth, they
were not comfortable selecting numerical values. In fact, for
the qthreshold parameter, they refused altogether. Instead
of absolute quantity thresholds they decided to specify rela-
tive thresholds, e.g., “We want the same quantityq of both
of these signatures.” It is unclear whether this is because rel-
ative thresholds are in fact a more natural representation, or
because insufficient explanation ofqthreshold led to misun-
derstandings during the discussion.

Second, the angularity attribute had not been formally de-
fined before the discussion, so one of the signatures specifies
“high” angularity without a numerical threshold value. This
problem is clearly due to ambiguity in the task presented to
the scientists.

Finally, during the priority specification process, the scien-
tists had at their disposal substantial amounts of science data
collected earlier at desert sites similar to the human-onboard
sites. They could have used example features from the prior
data in two ways: either by specifying example-based classes,
or by measuring the properties of example features and using
that information to manually tune threshold attribute values.

In fact, they elected to do neither. One of their target signa-
tures was intended to capture light-colored quartz rocks that
sometimes host photosynthetic endoliths. They had identi-
fied such rocks in earlier data sets, but they did not reexamine
the prior data when selecting an albedo threshold of 0.9. Un-
fortunately, as far as we can determine there were no rocks
that bright anywhere in the area. In a real SA application,
this problem would be especially pernicious—if the scientists
specify a class too strictly, the rover might pass over the very
borderline features that would allow them to realize their mis-
take. This observation bears out our argument that use ofin
situexamples provides more robust classification.

Our overall conclusions from the scientist interaction are that
(1) the priority language we used is a reasonable first step, (2)
it is difficult to pin down usability problems because we did
not invest enough time documenting the language and train-
ing the science team before the experiment, and (3) select-
ing numerical thresholds was a major source of problems that
may be partially correctible through use of example-based
classes.

Human-onboard Sampling Strategy

Human-onboard sampling seemed qualitatively far less effec-
tive than we anticipated before the experiment. Our analysis
explains the problems we encountered and the discusses the
extent to which they would also apply in an actual SA imple-



Rock attributes density reward nthresh qthresh

Size> 50 cm > 1 rock 6 10 q
Size from 15-50 cm > 1 rock 2 10 q
Angularity high > 50% 8 10 q
Albedo> 0.9 > 5% 10 10 2q

Figure 5. Rock target signatures for run A.

mentation.

First, the preview images did not really provide the context
needed to guide the operator. A good set of preview images
should have wide coverage and high resolution, and it should
be possible to collect it quickly. In practice our sensor config-
uration could support any two of these goals but not all three.
If we had chosen to use the SPI, its narrow field of view would
have made it necessary to assemble an image mosaic in order
to get wide enough coverage, but that process would have
been too time consuming. We elected to use the NavCams
instead. Each preview consisted of three images from the left
NavCam, pointed at azimuth−15o, 0o, and+15o so that they
overlapped to cover a90o wedge in front of the rover. Fig.
6 shows an example image (the dark rock in the foreground
measures approximately 10 cm).

Figure 6. Example preview image.

Unfortunately, the NavCam images suffered from two prob-
lems. First, we were forced to grab the images at320 × 240
resolution in order to retain compatibility with the rover’s
stereo obstacle avoidance software. This low resolution over
a 60o field of view made interpretation difficult, particularly
for terrain at distances of 5 meters and beyond. Second, the
elevation angle of the NavCams was optimized for local ob-
stacle avoidance, so they were not normally able to see ter-
rain beyond about 10 meters distance. The result was that
the operator was reduced to moving around more or less at
random and using the preview data only to decide whether
a sample at the current location was worthwhile. But note
that this problem depends on the scale at which we were se-

lecting samples—the area covered by the NavCam images
would have been ideal if the task were to select local fea-
tures for targeted spectrometer readings. This is not an iso-
lated problem—sensing configuration issues similar to what
we observed have also been identified in earlier SA systems
[1].

Another problem was the time consumed by repeatedly stop-
ping to grab a preview and decide on the next command, even
using the high-speed NavCam-based preview approach. We
define thespeed penaltyof an SA system to be the ratio of
the average rover speed under periodic sampling to the aver-
age speed under SA. We were surprised to note that the speed
penalty for all three of our human-onboard runs was greater
than 2; we had not really attempted a speed analysis before
the experiment. In a real application, a performance gap that
large has the potential to more than offset any gains in the
quality of data return when using active SA.

We conclude that the effectiveness of SA decisions is strongly
affected by its sensing configuration, which determines the
viewing area it covers, the size of resolvable features, and the
rate at which data can be collected. The sensing requirements
depend on the nature of the SA task (e.g., precision target-
ing of small features or large-scale motion decisions), and the
speed penalty needs to be considered. The overall message is
that requirements specific to SA should be considered early
in the rover design process— retro-fitting an SA system onto
a pre-existing sensing platform is likely to be problematic.

However, the good news is that modeling SA sensing require-
ments is very similar to modeling navigation sensing require-
ments, a topic that has received considerable attention [6], [7].
In each case, the overall system performance is affected both
by inherent limits on the sensing technology and by compu-
tational limits on the rate at which data can be processed. In
the future we hope to take advantage of this connection to
produce more effective SA system designs.

6. CONCLUSIONS

This paper sketched a broad conceptual framework for sci-
ence autonomy and analyzed new operational modes in terms
of potential benefits and technical challenges. We introduced
a language for specifying science priorities, and applied the
language in a rover field experiment with a team of scientists.
Although results to date are only qualitative, we made several
important observations that will guide our ongoing design of
a full SA system.
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