
Focused Real-Time Dynamic Programming for MDPs:
Squeezing More Out of a Heuristic

Trey Smith and Reid Simmons
Robotics Institute, Carnegie Mellon University

{trey,reids}@ri.cmu.edu

Abstract

Real-time dynamic programming (RTDP) is a heuris-
tic search algorithm for solving MDPs. We present a
modified algorithm called Focused RTDP with several
improvements. While RTDP maintains only an upper
bound on the long-term reward function, FRTDP main-
tains two-sided bounds and bases the output policy on the
lower bound. FRTDP guides search with a new rule for
outcome selection, focusing on parts of the search graph
that contribute most to uncertainty about the values of
good policies. FRTDP has modified trial termination cri-
teria that should allow it to solve some problems (within
ε) that RTDP cannot. Experiments show that for all the
problems we studied, FRTDP significantly outperforms
RTDP and LRTDP, and converges with up to six times
fewer backups than the state-of-the-art HDP algorithm.

Introduction
Markov decision processes (MDPs) are planning problems
in which an agent’s actions have uncertain outcomes, but
the state of the world is fully observable. This paper stud-
ies techniques for speeding up MDP planning by leverag-
ing heuristic information about the value function (expected
long-term reward available from each state). In many do-
mains, one can quickly calculate upper and lower bounds on
the value function. As with the A∗ algorithm in a determin-
istic setting, admissible bounds can be used to prune much
of the search space while still guaranteeing optimality of the
resulting policy.

Real-time dynamic programming (RTDP) is a well-
known MDP heuristic search algorithm (Barto, Bradtke, &
Singh 1995). Each RTDP trial begins at the initial state
of the MDP and explores forward, choosing actions greed-
ily and choosing outcomes stochastically according to their
probability.

This paper introduces the Focused RTDP algorithm,
which is designed to both converge faster than RTDP and
solve a broader class of problems. Whereas RTDP keeps
only an upper bound on the long-term reward function,
FRTDP keeps two-sided bounds and bases its output policy
on the lower bound (Goodwin 1996), significantly improv-
ing anytime solution quality and performance guarantees.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

FRTDP guides outcome selection by maintaining a prior-
ity value at each node that estimates the benefit of directing
search to that node. Priority-based outcome selection both
focuses sampling on the most relevant parts of the search
graph and allows FRTDP to avoid nodes that have already
converged.

FRTDP has modified trial termination criteria that should
allow it to solve some problems that RTDP cannot. RTDP is
known to solve a class of non-pathological stochastic short-
est path problems (Barto, Bradtke, & Singh 1995). We con-
jecture that FRTDP additionally solves (within ε) a broader
class of problems in which the state set may be infinite and
the goal may not be reachable from every state.

Relative to existing algorithms, FRTDP is intended to be
more robust, converge faster, and have better anytime solu-
tion quality before convergence is reached. Experimentally,
FRTDP significantly outperformed several other algorithms
on all the problems we studied.

Related Work
Action selection based on the lower bound is a frequently
occurring idea in decision theoretic search. It was used in
(Goodwin 1996) and probably earlier, and applied to MDPs
in (McMahan, Likhachev, & Gordon 2005).

LRTDP (Bonet & Geffner 2003b) and HDP (Bonet &
Geffner 2003a) are RTDP-derived algorithms that similarly
use the idea of avoiding updates to irrelevant states. How-
ever, their trials are not restricted to a single path through
the search graph, and they do not explicitly select outcomes.
Irrelevant states are avoided through a modified trial termi-
nation rule.

HSVI (Smith & Simmons 2004) and BRTDP (McMahan,
Likhachev, & Gordon 2005) both include the idea of out-
come selection, but they prioritize internal nodes by uncer-
tainty rather than the FRTDP concept of priority. We con-
jecture that FRTDP priorities will lead to better performance
than uncertainty values because they better reflect the single-
path trial structure of RTDP. Unfortunately, we do not have
a performance comparison. HSVI is designed for POMDPs,
and we did not compare with BRTDP because we did not
become aware of it until just before publication.

LAO∗ (Hansen & Zilberstein 2001) is another heuristic
search algorithm, but with a control structure unlike RTDP’s
deep single-path trials. We did compare with LAO∗ because

it was dominated by LRTDP in an earlier study with similar
problems (Bonet & Geffner 2003b).

IPS and PPI (McMahan & Gordon 2005) also outperform
LRTDP on racetrack problems. We did not compare with
these algorithms because they explore backward from a goal
state rather than forward from a start state. The distinction
is not crucial for the racetrack problem, but forward explo-
ration is required for multiple-reward problems where the
set of goal states is ill-defined, and for problems where the
set of possible predecessors of a state is not finite (as when
POMDPs are formulated as belief-state MDPs).

MDP Model
An MDP models a planning problem in which action out-
comes are uncertain but the world state is fully observable.
The agent is assumed to know a probability distribution for
action outcomes. This paper studies discrete infinite-horizon
stationary MDPs, formally described by a set of states S, a
finite set of actions A, a successor function C providing the
set of states that could result from an action Ca(s) ⊆ S,
transition probabilities T a(si, sj) = Pr(sj |si, a), a real-
valued reward function R(s, a), a discount factor γ ≤ 1,
an initial state s0, and a (possibly empty) set of absorbing
goal states G ⊆ S. Taking any action in a goal state causes
a zero-reward self-transition with probability 1.

The object of the planning problem is to generate a sta-
tionary policy π that maximizes expected long-term reward:

Jπ(s) = E

[∞∑
t=0

γtR(st, at) | s, π

]
(1)

Our algorithms generate an approximately optimal policy π̂
with small regret Jπ∗

(s0)− J π̂(s0) when executed starting
from s0.

Value Iteration and Heuristic Search
An MDP can be solved by approximating its optimal value
function V ∗ = Jπ∗

. Any value function V induces a greedy
policy πV in which actions are selected via one-step looka-
head. The policy induced by V ∗ is optimal.

Value iteration (VI) is a widely used dynamic program-
ming technique in which one solves for V ∗ using the fact
that it is the unique fixed point of the Bellman update:

V (s)← max
a

R(s, a) + γ
∑

s′∈Ca(s)

T a(s, s′)V (s′)

 . (2)

VI algorithms start with an initial guess for the right-hand
side of (2) and repeatedly update so that V gets closer to
V ∗.

In classical synchronous value iteration (VI), at each step
the Bellman update is applied over all states simultaneously.
Conversely, asynchronous algorithms update states one at
a time. By updating the most relevant states more often
and carefully choosing the right update ordering, they often
achieve faster convergence.

The heuristic search algorithms we consider are asyn-
chronous VI algorithms that can use additional a priori in-
formation in the form of admissible bounds hL and hU on

the optimal value function, satisfying hL ≤ V ∗ ≤ hU . For
goal states s ∈ G, we enforce that hL(s) = hU (s) = 0.
hL and hU help the algorithm choose which states to asyn-
chronously update.

Incremental Search Graph Expansion
Every MDP has a corresponding AND/OR search graph.
Nodes of the graph are states of the MDP. Each state/action
pair of the MDP is represented with a k-connector in the
search graph, connecting a state s to its possible successors
Ca(s). Individual edges of each k-connector are annotated
with transition probabilities.

The explicit graph is a data structure containing a sub-
set of the MDP search graph. Heuristic search algorithms
can often reach an optimal solution while only examining a
tiny fraction of the states in the search graph, in which case
generating node and link data structures for the unexamined
states would be wasteful. Instead, one usually provides the
algorithm with an initial explicit graph containing s0 and
callbacks for extending the explicit graph as needed.

Expanding a node means generating its outgoing k-
connectors and successor nodes and adding them to the ex-
plicit graph. Explicit graph nodes are either internal nodes,
which have already been expanded, or fringe nodes, which
have not. Let I denote the set of internal nodes and F the
set of fringe nodes.

In this framework, one can ask: given the information em-
bodied in a particular explicit graph, what inferences can be
drawn about the quality of different policies? And which
fringe nodes should be expanded in order to improve quality
estimates?

A useful statistic for characterizing a policy π is its occu-
pancy Wπ(s) for each state s. If we consider the distribution
of possible execution traces for π and interpret the discount
γ in terms of trace termination (i.e., execution terminates at
any given time step with probability 1 − γ), then Wπ(s)
is the expected number of time steps per execution that π
spends in state s before passing beyond the fringe into the
unknown part of the graph.

Formally, occupancy is defined as the solution to the fol-
lowing simultaneous equations (s′ ∈ I ∪ F):

Wπ(s′) = W0(s′) + γ
∑

s∈I−G
Wπ(s)Tπ(s)(s, s′) (3)

where W0(s′) is 1 if s′ = s0 and 0 otherwise.1
The occupancy at each fringe node indicates its relevance

to the policy. In particular, the quality Jπ(s0) of a policy
satisfies

Jπ(s0) = Jπ
I +

∑
s∈F

Wπ(s)Jπ(s) (4)

where Jπ
I is the expected reward from executing π up to

the point where it reaches a fringe node. Given an explicit
graph, Jπ

I can be calculated, but Jπ(s) for fringe nodes s

1If γ = 1 and π has loops, the occupancy of some states may
diverge. However, it converges for the problems and policies that
interest us.

cannot, because it depends on information in the unexplored
part of the graph.

One way to estimate V ∗(s0) is by keeping bound func-
tions V L ≤ V ∗ ≤ V U and choosing fringe nodes that help
squeeze the bounds interval |V U (s0) − V L(s0)| down to
zero. Eq. 4 can be added and subtracted to get

|V U (s0)− V L(s0)| ≤
∑
s∈F

Wπ∗
(s)|V U (s)− V L(s)|(5)

≤
∑
s∈F

Wπ∗
(s)|hU (s)− hL(s)| (6)

where the constant Jπ
I has dropped out by subtraction, and

we have brought in the only available information about the
value at fringe nodes, i.e., their heuristic values. This expres-
sion makes clear each fringe node’s contribution to the un-
certainty at s0. The best possible result of expanding a fringe
node s is to decrease its local uncertainty to 0, reducing the
uncertainty at s0 by at most Wπ∗

(s)|hU (s) − hL(s)|, “the
occupancy times the uncertainty”. Later, we discuss how to
approximate this upper bound on uncertainty reduction and
use it to guide fringe node expansion.

Real-Time Dynamic Programming
RTDP (alg. 1) is an asynchronous VI algorithm that works
by repeated trials; each trial starts at s0 and explores forward
in the search graph. At each forward step, action selection
is greedy based on the current value function, and outcome
selection is stochastic according to the distribution of possi-
ble successor states given the chosen action. When a goal
state is reached, RTDP terminates the trial by retracing its
steps back to s0, updating each state along the way. The
value function V U is initialized with a heuristic hU ≥ V ∗.
Like the A∗ algorithm in the deterministic setting, RTDP of-
ten converges without even examining all the states of the
problem.

Focused RTDP
Focused RTDP (alg. 2) is derived from RTDP. As in RTDP,
FRTDP execution proceeds in trials that begin at s0 and ex-
plore forward through the search graph, selecting actions
greedily according to the upper bound, then terminating and
performing updates on the way back to s0. Unlike RTDP,
FRTDP maintains a lower bound and uses modified rules
for action selection and trial termination.

Using a Lower Bound
RTDP keeps an upper bound V U that is initialized with an
admissible heuristic hU ≥ V ∗, and its output policy is the
greedy policy induced by V U . In contrast, FRTDP keeps
two-sided bounds V L ≤ V ∗ ≤ V U and outputs the greedy
policy induced by V L.

There are two main benefits to keeping a lower bound.
First, if hL is uniformly improvable2, the greedy policy in-
duced by VL has value at least as good as VL(s0)—in other

2Applying the Bellman update to a uniformly improvable func-
tion brings the function everywhere closer to V ∗ (Zhang & Zhang
2001).

Algorithm 1 RTDP

function initNode(s):
{implicitly called the first time each state s is touched}
s.U ← hU (s)

function QU(s, a):
return R(s, a) + γ

∑
s′∈Ca(s) T a(s, s′) s′.U

function backup(s, a):
s.U ← maxa QU(s, a)

function trialRecurse(s):
if s ∈ G then return end if
a∗ ← argmaxaQU(s, a)
trialRecurse(chooseSuccessorStochastically(s, a∗))
backup(s)

function RTDP(s0):
loop trialRecurse(s0)

Algorithm 2 Focused RTDP

function initNode(s):
{implicitly called the first time each state s is touched}
(s.L, s.U) ← (hL(s), hU (s)); s.prio ← ∆(s)

function ∆(s):
return |s.U - s.L| − ε/2

function QL(s, a):
return R(s, a) + γ

∑
s′∈Ca(s) T a(s, s′) s′.L

function QU(s, a):
return R(s, a) + γ

∑
s′∈Ca(s) T a(s, s′) s′.U

function backup(s, a):
s.L ← maxa QL(s, a)
(u, a∗) ← max, argmaxaQU(s, a)
δ ← |s.U− u|; s.U ← u
(p, s∗) ← max, argmaxs′∈Ca∗ (s)γT a∗

(s, s′) s′.prio
s.prio ← min(∆(s), p)
return (a∗, s∗, δ)

function trackUpdateQuality(q, d):
if d > D/kD then

(qcurr, ncurr) ← (qcurr + q, ncurr + 1)
else

(qprev, nprev) ← (qprev + q, nprev + 1)
end if

function trialRecurse(s,W, d):
(a∗, s∗, δ) ← backup(s)
trackUpdateQuality(δW, d)
if ∆(s) ≤ 0 or d ≥ D then return
trialRecurse(s∗, γT a∗

(s, s∗)W,d + 1)
backup(s)

function FRTDP(s0):
D ← D0

while s0.U - s0.L > ε do
(qprev, nprev, qcurr, ncurr) ← (0, 0, 0, 0)
trialRecurse(s0,W = 1, d = 0)
if (qcurr/ncurr) ≥ (qprev/nprev) then D ← kDD

end while

words, one can interrupt the algorithm at any time and get
a policy with a performance guarantee. The second benefit
is that empirically, up to the point where V L and V U con-
verge, policies derived from V L tend to perform better. Poli-
cies derived from the upper bound are often “get rich quick”
schemes that seem good only because they have not been
thoroughly evaluated. The obvious drawback to keeping a
lower bound is that updating it increases the cost of each
backup. In practice, we observe that adding lower bound
calculation to the HDP algorithm increases wallclock time
to convergence by about 10%, but with substantial benefits
to anytime performance.

FRTDP maintains a lower bound and outputs the greedy
policy induced by the lower bound. It also uses the lower
bound during its priority calculation for outcome selection,
as described below.

Outcome Selection
Whereas RTDP chooses an action outcome stochastically,
FRTDP outcome selection attempts to maximize the im-
provement in the quality estimate of the greedy policy πU

by expanding the fringe node s with the largest contribution
to the uncertainty of JπU (s0).

FRTDP allows the user to specify a regret bound ε. If
there is an envelope of nodes s that all satisfy |V U (s) −
V L(s)| ≤ ε, then FRTDP algorithm termination can be
achieved without expanding any more fringe nodes. And
it is perhaps easier to achieve a condition where |V U (s) −
V L(s)| ≤ ε/2 for a majority of nodes in the envelope, with
uncertainties not too large at the rest. Thus, FRTDP can
safely terminate a trial when it reaches a state whose uncer-
tainty is very small. We define the excess uncertainty of a
state ∆(s) = |V U (s)−V L(s)|−ε/2 and terminate any trial
that reaches a state with ∆(s) ≤ 0. (This is one of two trial
termination criteria; see the next section.)

FRTDP outcome selection is designed to choose the
fringe node s that maximizes WπU (s)∆(s) (occupancy
times excess uncertainty). But due to computational con-
straints, it prioritizes nodes via an approximation scheme
that only guarantees the best fringe node in certain special
cases. FRTDP recursively calculates a priority p(s) for each
node s, such that choosing the successor state with the high-
est priority at each step causes the trial to arrive at the max-
imizing fringe node. The recursive update formula is

p(s) = ∆(s) (fringe)

p(s) = min(∆(s), max
s′∈Ca∗ (s)

γT a∗
(s, s′)p(s′)) (internal)

where the action a∗ is chosen greedily according to the upper
bound. p(s) is recalculated along with V U (s) and V L(s) at
each update of a node.

The priority update rule is guaranteed to lead FRTDP to
the best fringe node only in the case that the search graph
is a tree. In a general graph, there are two confounding fac-
tors that violate the guarantee. First, Wπ(s) is the expected
amount of time π spends in s, adding up all possible paths
from s0 to s. Maximizing p(s) at each step effectively prior-
itizes fringe nodes according to their maximum occupancy
along the single most likely path (in a tree there is only one

path). Second, since after trial termination FRTDP performs
updates back to s0 along only one path instead of along all
paths, priorities at internal nodes can be inconsistent with
respect to their successors.

In practice we find that, despite multi-path violations of
the assumptions on which the priority is based, choosing
outcomes by priority is better than choosing them stochas-
tically. There may also be more accurate priority update
schemes that mitigate multi-path error—the current scheme
was chosen to keep overhead small and retain the trial-based
framework of RTDP.

Adaptive Maxumum Depth Termination
With the excess uncertainty trial termination alone, FRTDP
is a usable search algorithm. However, as with RTDP, poor
outcome selection early in a trial could lead into a quagmire
of irrelevant states that takes a long time to escape.

FRTDP’s adaptive maximum depth (AMD) trial termina-
tion criterion mitigates this problem by cutting off long tri-
als. FRTDP maintains a current maximum depth D. A trial
is terminated if it reaches depth d ≥ D. FRTDP initializes
D to a small value D0, and increases it for subsequent trials.
The idea is to avoid over-committing to long trials early on,
but retain the ability to go deeper in later trials, in case there
are relevant states deeper in the search graph.

FRTDP performance for any particular problem depends
on how D is adjusted, so it is important that whatever tech-
nique is used be relatively robust across problems without
manual parameter tuning. We chose to adjust D adaptively,
using trial statistics as feedback. After each trial, FRTDP
chooses whether to keep the current value of D or update
D ← kDD.

The feedback mechanism is fairly ad hoc. Each update in
a trial is given an update quality score q = δW that is in-
tended to reflect how useful the update was. δ measures how
much the update changed the upper bound value V U (s). W
is a single-path estimate of the occupancy of the state being
updated under the current greedy policy. After each trial, D
is increased if the average update quality near the end of the
trial (d > D/kD) is at least as good as the average update
quality in the earlier part of the trial. Refer to the pseudo-
code of alg. 2 for details.

The racetrack problems used in our experiments were de-
signed to be solved by RTDP, so it is no surprise that they are
particularly benign and suitable for deep trials. In the race-
track domain, AMD termination hurts performance slightly
overall, as early trials are less efficient before D grows large.
However, AMD improves performance on some more chal-
lenging problems (not reported here). For all the listed re-
sults, we used AMD with D0 = 10 and kD = 1.1.

Model Assumptions and Convergence
Stochastic shortest path problems (SSPs) are MDPs that sat-
isfy additional restrictions (Bertsekas & Tsitsiklis 1996):
S1. All rewards are strictly negative.
S2. S is finite.
S3. There exists at least one proper policy, that is, a policy

that reaches G from any state with probability 1.

RTDP requires another condition:
R1. All policies that are improper must incur infinite cost

for at least one state.
Under conditions S1-S3 and R1, RTDP’s V U value function
is guaranteed (with probability 1) to converge to V ∗ over
the set of relevant states, i.e., states that can be reached by
at least one optimal policy (Barto, Bradtke, & Singh 1995).
Unsurprisingly, there is a corresponding result for FRTDP.
Theorem 1. Under conditions S1-S3 and R1 and setting ε =
0, FRTDP’s V L and V U bounds are guaranteed to converge
to V ∗ over the set of relevant states.

We conjecture that FRTDP can also approximately solve
a broader class of SSP-like problems that satisfy:
F1. There are global reward bounds RL and RU such that

for every (s, a) pair, RL ≤ R(s, a) ≤ RU < 0.
F2. There exists at least one policy that (a) reaches G start-

ing from s0 with probability 1, and (b) has positive oc-
cupancy for only a finite number of states.

F3. hL and hU are uniformly improvable.
Conjecture 2. Under conditions F1-F3, FRTDP is guar-
anteed to terminate with an output policy whose regret is
bounded within ε.

FRTDP should terminate under these weaker conditions
because (unlike RTDP) each trial is capped at a finite maxu-
mum depth D; thus poor decisions early in a trial can always
be reconsidered in the next trial. The mechanism for adjust-
ing D should not affect the termination guarantee, as long as
the sequence of cap values increases without bound.

The weaker conditions allow FRTDP to solve problems
that RTDP cannot. For example, POMDPs formulated
as belief-space MDPs naturally have an infinite state set.
FRTDP can still solve them if they satisfy F1-F3. FRTDP
can also solve problems with “one-way doors”, in which
poor early action choices lead to states from which the goal
is unreachable, as long as there is a policy guaranteed to
reach the goal starting from s0.

Experimental Results
We evaluated the performance of FRTDP on problems in the
popular racetrack benchmark domain from (Barto, Bradtke,
& Singh 1995). States of racetrack are integer vectors in
the form (x, y, ẋ, ẏ) that represent the discrete position and
speed of the car in a 2D grid. The actions available to the car
are integer accelerations (ẍ, ÿ) where both ẍ and ÿ are drawn
from {−1, 0, 1}. The car starts in one of a set of possible
start states. The goal is to maneuver the car into one of a set
of goal states. Some cells in the grid are marked as obstacles;
if the car’s path intersects one of these cells, it is reset back to
one of the start states with zero velocity. Uncertainty in this
problem comes from “skidding”. Each time the agent takes
an acceleration action, with probability p the car skids: the
commanded action is replaced with (ẍ, ÿ) = (0, 0).

Because FRTDP focuses on outcome selection, we also
wanted to study increasing the amount of uncertainty in the
problem. We did this in two ways. First, we examined per-
formance with p = 0.1 (the standard case) and p = 0.3

(increased chance of skidding, marked by adding a suffix
of -3 to the problem name). Second, we tried increasing
the number of possible outcomes from an error. We call
this the “wind” variant (marked by adding a suffix of -w).
In the wind variant, with probability p = 0.1 an additional
acceleration is added to the commanded acceleration. The
additional acceleration is drawn from a uniform distribu-
tion over 8 possible values: {(−1,−1), (−1, 0), (−1, 1),
(0,−1), (0, 1), (1,−1), (1, 0), (1, 1)}. The idea is that in-
stead of skidding, a “gust of wind” provides additional ac-
celeration in a random direction.

We selected two racetrack problems whose maps have
been published: large-b from (Barto, Bradtke, & Singh
1995) and large-ring from (Bonet & Geffner 2003b).
With three versions for each problem, our results cover a
total of six problems.

We selected three heuristic search asynchronous VI algo-
rithms to compare with FRTDP: RTDP, LRTDP, and HDP.
In addition, we implemented a modified version of HDP that
maintains a lower bound and uses that as the basis for its out-
put policy. We call this algorithm HDP+L.

Following (Bonet & Geffner 2003b), all algorithms were
provided with the same admissible upper bound heuristic
hU , calculated by a domain-independent relaxation in which
the best possible outcome of any action is assumed to always
occur. Formally, the Bellman update is replaced by

V (s)← max
a

[
R(s, a) + γ max

s′∈Ca(s)
V (s′)

]
(7)

The time required to calculate hU is not included in the re-
ported running times for the algorithms.

There is no trivial way to calculate an informative ad-
missible lower bound for a racetrack problem. A formally
correct way to handle this, with minor algorithm modifi-
cations, is to set hL(s) = −∞ for all non-goal states s.
However, dealing with infinite values would have required
some extra bookkeeping, so for convenience we supplied
hL(s) = −1000, which is a gross underestimate of the ac-
tual V ∗(s) values. In principle, the finite lower bound could
allow FRTDP to prune some additional low-probability out-
comes, but this did not happen in practice. See (McMahan,
Likhachev, & Gordon 2005) for discussion of how to effi-
ciently calculate a more informative lower bound.

Fig. 1 reports time to convergence within ε = 10−3 for
each (problem, algorithm) pair, measured both as number
of backups and wallclock time. Our experiments were run
on a 3.2 GHz Pentium-4 processor with 1 GB of RAM. We
implemented all the algorithms in C++; they were not thor-
oughly optimized, so the number of backups required for
convergence was measured more reliably than the wallclock
time (which could probably be substantially reduced across
the board). Included in wallclock time measurements is the
time required to check racetrack paths for collisions; colli-
sion checking was performed the first time a state was ex-
panded, and the results were cached for subsequent updates.

The observed speedup of FRTDP convergence compared
to HDP, measured in terms of number of backups, ranges
from 2.9 up to 6.4. Our initial expectation was that FRTDP

Algorithm large-b large-b-3 large-b-w large-ring large-ring-3 large-ring-w
RTDP 5.30 (5.19) 10.27 (9.12) 149.07 (190.55) 3.39 (4.81) 8.05 (8.56) 16.44 (91.67)
LRTDP 1.21 (3.52) 1.63 (4.08) 1.96 (14.38) 1.74 (5.19) 2.14 (5.71) 3.13 (22.15)
HDP 1.29 (3.43) 1.86 (4.12) 2.87 (15.99) 1.27 (4.35) 2.74 (6.41) 2.92 (20.14)
HDP+L 1.29 (3.75) 1.86 (4.55) 2.87 (16.88) 1.27 (4.70) 2.74 (7.02) 2.92 (21.12)
FRTDP 0.29 (2.10) 0.49 (2.38) 0.84 (10.71) 0.22 (2.60) 0.43 (3.04) 0.99 (14.73)

Figure 1: Millions of backups before convergence with ε = 10−3. Each entry gives the number of millions of backups, with
the corresponding wallclock time (seconds) in parentheses. The fastest time for each problem is shown in bold.

would show more speedup on the -3 and -w problem vari-
ants with more uncertainty; in fact its speedup was about
the same on -3 problems and smaller on -w problems. We
do not yet understand why this is the case. By construc-
tion, HDP and HDP+L have identical convergence proper-
ties in terms of the number of backups required. As mea-
sured in wallclock time, lower bound updating for HDP+L
introduces an additional cost overhead of about 10%.

Fig. 2 reports anytime performance of three of the
algorithms (HDP, HDP+L, and FRTDP) on the two
problems where FRTDP showed the least convergence
time speedup (large-ring-w) and the most speedup
(large-ring-3) relative to HDP. The quality (expected
reward) of an algorithm’s output policy was measured at
each epoch by simulating the policy 1000 times, with each
execution terminated after 250 time steps if the goal was
not reached. Error bars are 2σ confidence intervals. The
two algorithms that output policies based on a lower bound
(HDP+L and FRTDP) are seen to have significantly bet-
ter anytime performance. In fact, for large-ring-w,
FRTDP reaches a solution quality of -40 with about 40 times
fewer backups than HDP. In each plot, the solid line indicat-
ing FRTDP solution quality ends at the point where FRTDP
achieved convergence.

large-ring-w large-ring-3

-140

-120

-100

-80

-60

-40

-20

102 103 104 105 106 107

HDP
HDP+L
FRTDP

-140

-120

-100

-80

-60

-40

-20

103 104 105 106 107

HDP
HDP+L
FRTDP

Figure 2: Anytime performance comparison: solution qual-
ity vs. number of backups.

Conclusions
FRTDP improves RTDP by keeping a lower bound and mod-
ifying outcome selection and trial termination rules. These
modifications allow FRTDP to solve a broader class of prob-
lems, and in performance experiments FRTDP provided sig-
nificant speedup across all problems, requiring up to six
times fewer backups than HDP to reach convergence.

We also examined the separate performance impact of us-
ing a lower bound by implementing both HDP and HDP+L.
This technique can be usefully applied on its own to any
RTDP-like algorithm.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72(1-2):81–138.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of IJCAI.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real time dynamic programming. In
Proc. of ICAPS.
Goodwin, R. 1996. Meta-Level Control for Decision The-
oretic Planners. Ph.D. Dissertation, School of Computer
Science, Carnegie Mellon Univ., CMU-CS-96-186.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
McMahan, H. B., and Gordon, G. J. 2005. Fast exact
planning in Markov decision processes. In Proc. of ICAPS.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proc. of ICML.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In Proc. of UAI.
Zhang, N. L., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable Markov
decision processes. Journal of AI Research 14:29–51.

