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DATA MINING DURING ROVER TRAVERSE: FROM IMAGES TO GEOLOGIC SIGNATURES
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ABSTRACT

Soon robotic explorers will be able to produce more sci-
entific data than can be transmitted or interpreted effi-
ciently. We present a method for characterizing geol-
ogy during rover traverse using autonomous data anal-
ysis techniques. The strategy detects discrete geologic
features in images; distributions of these features consti-
tute a signature that correlates with the geology of each
site. These numerical profiles reveal subtle trends and
boundaries in geologic units that facilitate targeted sam-
ple selection and efficient data analysis. We demonstrate
the system’s use on field data collected during a field ex-
pedition to the Atacama Desert of Chile.

1. INTRODUCTION

Advances in planetary rover technology enable robotic
explorers to produce data sets too large to analyze in de-
tail. Future rovers will travel kilometers between com-
mand cycles while potentially crossing multiple geologic
units and collecting hundreds or thousands of images and
spectra. Meanwhile mission resources — time for tak-
ing measurements, bandwidth to return the data and the
human resources to inspect it — will not keep pace with
the growing data volume. The result is a new series of
bottlenecks that prevent scientists from experiencing the
full benefit of improved rover capability [1]. A smaller
fraction of possible science targets will be investigated, a
smaller fraction of gathered data will be returned to sci-
entists on Earth, and a smaller fraction of returned data
will be analyzed thoroughly.

These issues have motivated research into autonomous
analysis of science data. “Science autonomy” describes
the ability of a system to understand collected data in or-
der to make more effective exploration decisions. On-
board science autonomy helps relieve resource bottle-
necks by focusing rover activity on the most important
data. By recognizing science targets and reasoning about
goals a rover can autonomously prioritize key features
for analysis and return. Meanwhile offboard science au-
tonomy helps scientists on Earth to analyze incoming

data quickly. Our group and others are studying sev-
eral aspects of science autonomy, including image analy-
sis [1, 2, 3], science priority representation [4, 5, 6], and
planning [7].
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Figure 1. Concept illustration of autonomous geologic
profiling in the Atacama Desert of Chile. “Zoë,” the rover
used in the field experiments, appears in the foreground.
The science autonomy system profiles different locations
on the rover’s traverse by generating distributions of dif-
ferent classes of rocks.

Here we focus on the specific science autonomy prob-
lem of detecting geologic trends in rover images. In our
model a rover collects image data at several coordinate
locations, or “locales.” We profile a locale’s geology
using the quantities of certain discrete features that are
present. This reduces a large data set to a simple statisti-
cal signature characterizing each locale. These signatures
reveal subtle geologic trends, the borders between geo-
logic units, and anomalous geology that is different from
neighboring locales (Fig. 1). Geologic signatures are
also useful onboard; a rover equipped with information
about unit boundaries could ensure that measurements
from each distinct geologic region is returned to Earth.
Finally, the signatures themselves provide compact sta-
tistical summaries of data sets that are far too large to
downlink.

This paper demonstrates autonomous geologic profiling
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by computing signatures from rover field data. Sec-
tion 2 begins by presenting different feature extraction
methods. We discuss a simple pixel-color approach and
a more sophisticated strategy involving rock detection.
Then section 3 tests these techniques on imagery from
autonomous rover traverses in the Atacama Desert of
Chile. The experiments use one data set made up of
images concentrated at a few widely-separated locales,
and another composed of periodic samples from a linear
traverse. We compare the resulting geologic signatures
to qualitative human interpretations. These tests suggest
that autonomous profiling of regional geology is accurate
enough to help resolve resource bottlenecks by summa-
rizing data sets too large to downlink and assisting with
their analysis after downlink.

2. FEATURE EXTRACTION

Geologic profiling is a technique that describes the ge-
ology of a locale using the discrete features found there.
We posit an unknown stochastic function which maps a
locale’s geologic class onto the quantity of each feature.
These features in turn generate noisy detections in the
rover’s onboard feature detection algorithm. The ability
to recover a geologic signature from detections relies on
the precision and invertability of these two mappings.

Geology → Features→ Detections (1)

This formulation underscores the importance of a good
set of features. Ideal features would follow reliably from
geologic class and produce reliable detections. In prac-
tice the designer must compromise between these two
goals. On one extreme the system might extract “simple
features” like pixel colors that are trivial to detect but ge-
ologically ambiguous. A large enough sample of simple
features might still yield a reliable geologic signature. An
attractive alternative is to find geologically relevant fea-
tures like rocks and patches of soil in the images. These
“complex features” are similar to what a human geol-
ogist might consider when describing the locale. They
combine many attributes in complex, empirically guided
ways. We have examined both simple and complex fea-
ture techniques for generating geologic signatures from
rover field data. Section 2.1 presents the simple feature
technique, while Section 2.2 describes the complex fea-
ture method by considering rock detection and classifica-
tion in detail.

2.1. Minimal Features: Color

A common method for database indexing computes a
histogram of the colors of all the pixels in an image
[8, 9]. The distribution of pixel colors becomes the sta-
tistical fingerprint that permits comparisons between im-
ages. While the simple features themselves are geologi-

cally uninteresting, combining many of them might still
result in a discriminating signature.

Figure 2. A small portion of the color histogram used for
comparing locales I-III in the first field experiment. The
vertical axis represents the percentage of image pixels in
each color bin.

Our “simple feature” signature utilizes a color histogram.
We calculate each pixel’s Hue/Saturation/Value (HSV)
color and place the result in a 3-dimensional histogram
with 32 bins along each axis. Only a small portion of the
possible colors appear in any image so our feature vector
is a selected portion of this histogram. In the following
experiments we discount colors associated with the sky.
The other 4875 colors that appear become features for
image comparison (Fig. 2).

A color-based feature extraction should ideally use a
formal color calibration to guard against illumination
changes. While the following experiments relied on the
automatic gain and balance features of the cameras, we
compensated by restricting experiments to short tests un-
der constant lighting. The bright sky washes out terrain
colors near the horizon so we constrained color profiling
to only use images where no skyline was visible.

2.2. Complex Features: Rock Detection and Classi-
fication

A complex feature method usesgeologic features like
rocks and soils [7, 10, 1]. It is not immediately clear that
such a description would yield better geologic fidelity be-
cause detecting these features in field data is difficult. In
the case of rocks, current detection strategies often find
less than 80% of the actual features [2]. Additionally
structural detection error might favor some features over
others and distort regional statistics. For example, large
rocks are easier to detect then small ones and shadows can
be mistaken for rocks with some methods. In the worst
case, complex features could result in a statistical descrip-
tor that ignores geologic boundaries or hallucinates them
where none exist.

If detection is accurate enough however then complex
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features should provide a superior match to ground-truth
geology. Complex features incorporate designer knowl-
edge in the detection process, forcing the system to focus
on geologically relevant data (like rocks) and ignore ir-
relevant changes (like the rover’s own shadow). More-
over, signatures based on complex features are them-
selves scientifically informative. Consider for example
a count of rock sizes, which is useful to geologists but
time-consuming to gather manually. A signature based
on rock size distributions or other complex features can
suggest possible geologic interpretations.

For simplicity and ease of ground-truthing we focus on
distributions of rocks. The overall procedure has several
stages (Fig. 3). Initially the system detects rocks in the
images in a manner similar to [2] but with the addition
of stereo data to provide information about scene geom-
etry1. An image pair is segmented into a set of candidate
features that might turn out to be rocks. A region-merging
segmentation algorithm processes multiple channels for
each image, considering each color and stereo channel
separately. The color segmentations find pixel regions
which have a uniform hue, saturation or intensity that dif-
fers from the background. Stereo segmentation identifies
an estimated ground plane with a least-squares fit, and
then finds regions of homogeneous height that lie well
above the plane as in [1]. This multichannel segmenta-
tion yields a set of pixel regions which might or might
not be science targets.

The system calculates a vector of numerical attributes for
each candidate region. These attributes include charac-
teristics like the estimated size, height above the ground,
color, and shape. Then a Bayesian belief network [15]
trained on human-labeled data analyzes each vector to
provide an output probability that the candidate region
is a true rock. In this manner the system generates a list
of detected rocks in the image.

Finally detected rocks are categorized into geologic
classes. The choice of which categories to use is highly
significant; it determines the distinctions that the sys-
tem can make. To offer scientists more flexibility we
permit categories according to both supervised and un-
supervised definitions as in [4]. This scheme permits
two general types of feature classes. The first, “inter-
val classes,” define a binary decision boundary along spe-
cific attribute values chosen by the scientist. For example,
quartz rocks might be identifiable by their high albedo; a
scientist could instruct the system to label as quartz any
rock which had an albedo greater than two standard de-
viations above the mean. While finding appropriate val-
ues might require some trial and error on the part of the
scientist, the interval-based classifications are simple and
predictable.

If a feature does not fall within a specific attribute in-
terval it becomes a candidate for a second-tier of classi-
fication using a probability density model. The model
uses several types of classes. Example-based classes
are a supervised categorization that fits a multivariate

1Other plausible rock detection strategies appear in [11, 12, 13, 14]
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Figure 3. Complete procedure for rock detection and
classification. A belief network classifies segmented im-
age regions, and a classification routine categorizes the
resulting features to generate class distribution signa-
tures for each locale.
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Figure 4. The interval class defines an absolute decision
boundary, while the other classes constitute a probability
density model of the remaining features. Only the EM-
based Gaussian clusters are adaptive.
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Gaussian distribution to representative examples pro-
vided by the scientist. The scientist could identify sev-
eral samples of quartz in previous days’ data; standard
maximum-likelihood techniques [16] find an appropri-
ate probability density distribution. These manually-
defined classes are complemented by unsupervised ex-
pectation/maximization (EM) clustering [17] that fits a
mixture of Gaussian distributions to remaining features.
Finally, an “outlier” class exhibits uniform probability
over the entire feature space. It captures novel features
that have little in common with any other rock.

The resulting model gives the quantity of each different
class at a locale, where classes are defined in terms of
a heterogeneous mixture of manual and adaptive com-
ponents (Fig. 4). This flexibility means that the scien-
tist might favor supervised categories, unsupervised cate-
gories, or some mixture of the two. While the classifica-
tions do not always correspond to the distinctions made
by a human geologist they are a useful metric for com-
paring different locales. Subtle changes like a shift in the
density of a certain class can identify important border
regions and suggest areas for further exploration.

We favor two techniques for visualizing and comparing
class distribution signatures. If there are only a few
classes a simple histogram offers an intuitive summary
of the locale. With many different classes, however, the
histograms may be hard to compare. Applying principal
component analysis (PCA) and projecting these distribu-
tions onto their first two principal components generates
a 2D plot that serves as a compact visual comparison of
the different locales. This is especially appropriate for
a simple features like pixel colors that could easily have
over a thousand distinct classes.

3. EXPERIMENTS

We performed rover field experiments in the Atacama
Desert, a region spanning several hundred kilometers in
the North of Chile. Conditions of extreme dessication
mean that the Atacama is nearly devoid of macroscopic
life. This together with its Mars-like terrain make it a
good testbed for planetary rover technology.

The experiments in this section aim to address some of
the aforementioned design choices with empirical data.
Foremost we compare the geologic fidelity of complex
feature extraction (i.e. rock detection) against simple
features. In addition we test geologic models utilizing
both supervised and unsupervised classification schemes.
Finally we compare data collection strategies: a “con-
centrated” method that collects large image sets at a
few well-spaced locales and a “high-frequency sampling”
method that collects single images at many short intervals
along a traverse.

The hardware platform used for the experiments is Zoë,
an exploration robot developed at Carnegie Mellon [18].
Zoë is a solar powered rover with a dual passive axle de-

stereo suite

pantilt actuator

workspace cameras 

Figure 5. Zöe’s science camera configuration.

sign that permits it to travel up to 1m/second and traverse
slopes and rough terrain [19]. Onboard navigation uses
stereo imagery and local path-planning to navigate be-
tween scientist-specified waypoints. Zoë also carries a
variety of science instruments. It incorporates a 2-meter
mast with a pan-tilt actuated stereo suite (Fig. 5). These
cameras individually provide a 21-degree field of view,
but we often generate mosaic panoramas to give complete
coverage of a locale. Also used for these experiments
are “workspace” cameras mounted under the body of
the rover, which complement the large-scale panoramic
views of a scene with close-up images of the ground.

3.1. Concentrated Data Collection

The first experiment consisted of a series of concentrated
samples from a few well-separated locales. We tested this
strategy during an autonomous traverse to the top of a
rock-strewn hill. The rover began a distance from the
base and traveled forward in 50 meter intervals, collecting
panoramas and workspace imagery at each locale. Five
locales were visited. The first three were situated on the
approach to the base of the hill and the fourth was part-
way up the hill to the top. Halfway between the fourth
and fifth locales Zöe encountered steep terrain thick with
obstacles that confounded autonomous navigation, so the
fifth locale at the peak of the hill was reached manually.

To an untrained human observer the first three locales all
appeared alike, with occasional patches of white sedi-
ment and few significant rocks. The hillside terrain at
the fourth locale was different, however - here the sedi-
ment contained some large dark rocks along with many
small white rocks. The white material was no longer
present at the fifth locale, but the peak of the hill was
covered with large gray rocks. Fig. 6 shows some of the
collected data. Row A corresponds to the ground-truth
human interpretation with dots representing rocks of dif-
ferent albedos. Row B shows sections of the 95-image
panoramas collected at each locale. Row C shows un-
derbody “workspace” imagery. While underbody images
were not used in the autonomous analysis they provide
some insight into terrain conditions at each locale.
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Figure 6. Locales I - V in the first field experiment. Row A: Qualitative human interpretation. The peak of the hill has
the highest concentration of rocks. Row B: A portion of the panorama from each locale. Row C: Underbody images from
each locale. Row D: Rock detection with manually defined “large rock,” “bright rock,” and “outlier” classes. Row E:
Unsupervised model using rock detection; classification employs EM clustering over color and size features. The mean
intensity of each class is shown.

simple features: pixel color complex features: rock detection, 
manual classes (row D)

complex features: rock detection, 
adaptive classes (row E)

Figure 7. Feature distributions from each of the profiling strategies projected into 2 dimensions with PCA. Geologic
signatures from the color histogram method (left) are misleading; they suggest a large difference between the first three
locales. Rock detection with manual classes (center) gives better signatures. Rock detection with adaptive classification
(left) best parallels the human interpretation.
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We detected rocks in the five panoramas and classified
the resulting features using a variety of different schemes.
The first classification scheme favored manually-chosen
interval classes: an albedo feature interval to account
for the white material, a second interval based on rock
size, and an outlier cluster to account for everything else.
These distribution histograms appear in row D. The clus-
ters show a general trend toward an increase in the num-
ber of rocks as one approaches the peak together with a
corresponding drop in the proportion of white material.
Note that in both unsupervised and supervised cases, a
larger amount of white rocks appear in locales I-III than
the ground-truth records suggest. This is due to patches
of white sediment (visible the first three panoramas of
row B) that can be mistaken for rocks.

The second classification used a completely unsupervised
model. Five multivariate Gaussian clusters were initial-
ized to random data points. Then EM clustering itera-
tively adjusted the clusters’ parameters to converge on
values that maximized their likelihood with respect to the
entire data set. The resulting distribution histograms ap-
pear in Fig. 6 row E. Three color-channels and size fea-
tures were used in clustering, but clusters divided mainly
along the intensity axis. Because of this the legend pro-
vides mean intensity information to distinguish the clus-
ters. This classification succeeds in detecting the general
trend in number and types of rocks — fewer rocks in lo-
cales I-III, white material that disappears as one climbs
the hill, and a profusion of dark rocks at locale V.

Fig. 7 shows the locale signatures plotted along their first
two principal components together with a third option uti-
lizing color histograms. The simple color features fare
worst; the relationship between color pixels from differ-
ent locales has little to do with the geologic ground truth.
This inaccuracy is highlighted by the first three locales,
which are similar geologically but widely separated in the
space of geologic signatures. This suggests that our color
histogram features are poor correlates of geologic type.
The distribution of colors is influenced by many factors
— such as features on the horizon or lighting changes —
that have little to do with the locale’s geology. Any subtle
differences in pixel counts caused by different concentra-
tions of rocks are overwhelmed by these other factors.

Detecting rocks in images provides better geologic sig-
natures. The PCA plot of manual categories suggests a
linear gradient of change between locales I and V. The
ground truth geologic change is sudden, however, so this
signature is still slightly misleading. The error is prob-
ably due to the bias from an overly-rigid model. Much
of the variation between locales occurs within the “other
rocks” category and is thus invisible to the classification.
Rock detection with unsupervised clustering yields the
best result, matching the human interpretation that locales
I - III are similar while locales IV and V are each different
from all others.

3.2. High-Frequency Data Collection

The second experiment tests an alternative data collec-
tion strategy that captures single images at high fre-
quency during an extended traverse. Unlike the metic-
ulous locale-based data collection the rover is in motion
during the entire procedure. This means that data can be
collected more quickly but dramatically reduces the sam-
ple size for characterizing each locale’s geology.

Here the rover traveled 100 meters across an open plain
and into a field of mid-sized (10-50cm) rocks. The pan-
tilt unit was fixed straight ahead at a -15 degree inclina-
tion. The resulting images showed the far-field in front
of the rover with enough horizon to provide some vi-
sual context. Images were captured every 2 meters. The
cameras were not synchronized during this experiment so
stereo geometry data was unavailable; rock detection re-
lied on pixel intensities alone.

Figure 8 shows the result of detecting rocks in each image
and clustering them into three unsupervised categories.
To reduce detection noise in the single-image samples a
smoothing operation averaged class counts among all im-
ages in a 2-neighbor radius. Again, clusters varied most
along the intensity attribute. The bar graph provides rock
counts for each class in each of the traverse images. Note
that the count is very small in the open plain and rises
rapidly as the rover enters the rock field near image 20.
The data suggest that a well-localized rover using this
technique should be able to autonomously place these
sharp boundaries to within 10 meters.

The decrease in the rock count around image 34 is not
due to a change in geology, but simply in rover head-
ing; for a moment the cameras pointed toward the well-lit
side of the rocks which made them difficult to distinguish
from the background sediment. Synchronizing cameras
for stereo should give the detector more data and help
to alleviate this problem. Nevertheless, the error under-
scores the challenge of using complex features for ge-
ologic profiling; the detection step can introduce addi-
tional error. This problem is more obvious in the high-
frequency sampling case where there are fewer images
available to determine the signature of each locale.

4. CONCLUSIONS

This paper describes a method to characterize a locale’s
geology by detecting and classifying features in rover im-
ages. While our “simple feature” profiling results in am-
biguous signatures, the complex features generated by
rock detection are accurate enough both for finding re-
gion boundaries and for providing basic summaries of
local geology. Our comparison of data collection poli-
cies suggests that both concentrated and high-frequency
sampling are useful for different purposes. Concentrated
data collection accumulates large sample sizes for more
accurate feature counts. High-frequency sampling offers
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Figure 8. Periodic sampling for data collection “en
route.” Images are spaced at 2 meter intervals during
an autonomous traverse into a dense rock field. The tran-
sition is visible in feature class signatures by image 15.

expedient summaries with higher spatial resolution. Ge-
ologic signatures will become more reliable as rock de-
tection and feature extraction continue to improve.

The approach we advocate here makes several simplify-
ing assumptions that future work might address. Spa-
tial smoothing aside we have presented discrete locales
as independent of each other. In fact the geologic class
of each location is correlated with other nearby locales.
One could glean additional accuracy from a higher-level
description like a Markov Random Field that represents
probabilistic relationships between different locales. An-
other shortcoming of our geologic signature profiling is
that locales are compared in an unsupervised fashion. Re-
gions are grouped purely on the basis of feature counts
without any consideration of what the resulting geologic
regionsmeanor the processes that generate the features
in the first place. This unsupervised description is ad-
vantageous in some respects — the first field experiment
shows the difficulty of translating human understanding
into numbers that generalize. However, unsupervised
profiles forgo the descriptive power of generative mod-
els that would permit permit reasoning about the causal
relationships between the geology of the terrain and the
rocks that appear.

Geologic signatures would benefit from data sources
apart from camera imagery. In the long term introduc-
ing additional data sources like spectroscopy and micro-
scopic imaging will provide additional information for
more complete models. The system would also profit
from orbital data. Scientists engaged in mission planning
could schedule traverses to investigate specific bound-
aries that are visible from orbit. During unsupervised
modeling, satellite data provides additional information
to characterize locales. Finally, orbital imagery could
corroborate rover-based geologic signatures during data
analysis.

As rovers travel longer distances they will offer new op-
portunities for planetary science, but also new challenges
in the form of resource bottlenecks. Autonomous science
answers these challenges with better selectivity from the
rover and better data analysis on the ground. Testing in
field scenarios will continue to be an important part of
understanding and validating these new technologies.
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