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Abstract— We propose a new optimal trajectory generation
technique on SE(3) which avoids known obstacles. We leverage
techniques from differential geometry and Lie algebra to
formulate a cost functional which is intrinsic to the geomet-
ric structure of this space and makes physical sense. We
propose an approximation technique to generate trajectories
on the subgroup SO(3) and use Semidefinite Programming
(SDP) to approximate an NP-Hard problem with one which
is tractable to compute. From this trajectory on the subgroup,
the trajectory generation on the other dimensions of the group
becomes a Quadratic Program (QP). For obstacle avoidance,
we use a computational geometric technique to decompose the
environment into overlapping convex regions to confine the
trajectory. We show how this motion planning technique can
be used to generate feasible trajectories for a space robot in
SE(3) and describe controllers that enable the execution of
the generated trajectory. We compare our method to other
geometric techniques for calculating trajectories on SO(3) and
SE(3), but in an obstacle-free environment.

I. INTRODUCTION

The set of configurations of a robot in 3D space is the
special Euclidean group (SE(3)). This group has 6 degrees
of freedom, 3 from translation motions and 3 from the
orientation, which is itself the special orthogonal group
SO(3). Trajectory generation in all 6 degrees is used in the
areas of robots such as end effector manipulation ([4]), path
generation for underwater robots ([14]) and space satellites
([22]). Many existing methods do not consider the geometric
structure of this manifold or optimality by just interpolating
between a series of intermediate points in translations and
rotations separately.

Through a differential geometric lens, there is extensive
literature on how to define metrics (inner products) and
integration on SE(3). [30] proposes multiple metrics and
connections for SE(3) and demonstrates that there is no
bi-invariant metric on this manifold. [9] shows how to
integrate functions on Lie groups and explicitly shows how to
transform between derivatives in common coordinate choices
for SO(3) and SE(3). [1] calculates the necessary conditions
for a minimum jerk trajectory of SE(3) from calculus of
variations on the manifold and proposes an approximation
method based on projecting curves from the general linear
group GL+ to SE(3). [23] suggests methods for optimally
interpolating between curves on just the rotation group using
cubic interpolation on multiple parameterizations of SO(3).
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There is a lot of literature on how to generate curves on flat
spaces such as Rn with applications to robotics. For collision
avoidance, it is necessary to generate optimal trajectories
inside a non-convex configuration space. [12],[10], and [29]
propose methods for generating optimal curves for similar
differentially flat systems using mixed integer and quadratic
programming techniques with a objective function which
minimizes the snap or jerk of the trajectory.

A more general optimization: Semidefinite Programming
(SDP) is often used in optimal control problems to generate
Lyapunov functions for dynamical systems ([24]). They can
also be used to find approximations for the minimum of
multivariate polynomials, which is NP-hard to solve exactly.
It has been shown that this approximation is close for
positive definite polynomials ([21]), and exact for quadratic
polynomials.

The control of a six degree of freedom holonomic robot
with on board propulsion jets is mathematically equivalent
to grasp manipulation of objects with point contacts with
friction. From this literature, it is well known that it takes
at least seven jets to stabilize our robot ([18]), but there are
more to distribute the load between them. We use a controller
which is stable and has region of convergence proved by [5].

There is rich literature on spacecraft guidance and control,
including multi-robot trajectory planning, optimization under
various cost metrics, and obstacle avoidance [26], [19]. Most
of this work (with a few exceptions [11]) focuses solely on
prior planning, without regard to real-time obstacle sensing
and replanning. In contrast, our algorithm, inspired by recent
developments in unmanned aerial vehicles, uses an obstacle
model and optimization techniques that have been shown to
enable both autonomous obstacle detection with COTS depth
sensors and rapid trajectory replanning at multiple-Hz rates
on compute-constrained platforms [27]. Thus, our approach
should be able to support efficient real-time avoidance of
unexpected obstacles, but this work does not focus on the
integration with sensor data.

The main contributions of this paper are:
1) An SDP for SO(3) minimum jerk trajectory generation
2) An SDP with a QP for SE(3) minimum jerk trajectory

generation with obstacle avoidance
3) The extension of the forward/backward relaxation algo-

rithm of [15] to arbitrary polyhedrons
4) The application of these techniques to our specific free-

flying platform.
This paper is organized in the order of these contributions.

First in Section II, we define inputs and outputs of our
trajectory generation technique. In Section III, we introduce
the necessary Lie algebra and differential geometry needed



Fig. 1: Picture of Astrobee: A free flying robotic platform
being designed for zero gravity flight inside of the Interna-
tional Space Station

to mathematically define an optimal trajectory on SE(3) as
well as the required mathematics to compare our method
to SO(3) trajectory generation techniques. In Section IV we
first present our method to generate trajectories on SO(3)
and then SE(3). In our SE(3) trajectory generation section,
we assume a given decomposition of the environment, which
we explain in Section V. We then describe the control for
our system in Section VI, analyze our results in Section VII
and Section VIII. We make a small assumption in Section V
which we prove in an appendix section (X).

II. PROBLEM FORMULATION

We seek to find a sufficiently smooth, optimal trajectory
A(t) for a rigid body from a start to goal pose specified
by elements of SE(3) in an environment with obstacles. The
required smoothness is determined by the system dynamics.
We define optimal with respect to the jerk functional in
Equation 12 because it is general, independent of the actuator
dynamics, and minimizes the change in actuator force.

For higher order functionals, this same methodology can
be applied, but the number of optimization variables would
grow. For a different system, snap can be used as in [10]. If
we were trying to minimize energy for our system, we could
use acceleration.

Since our metric in Section III is left invariant, we can
translate the trajectory without changing the jerk. Therefore,
without loss of generality, we assume the trajectory starts
from the identity element of SE(3).

Our approach separately plans translation and rotation
trajectories, then combines them to form the overall 6-DOF
trajectory. Decoupling makes sense for platforms that, like
Astrobee, are nearly spherically symmetric and have similar
thrust capabilities on all axes.

We require that our trajectory is not in collision with obsta-
cles. Relying on near-spherical symmetry, we can represent
collision avoidance as a constraint on only the positional
part of the trajectory. As in other methods [10] [29] [27],
we can replace checking collision of our robot, by a point
model with expanded obstacles. We inflate the obstacles in
our environment by a margin δ

δ = δr + δn (1)

Where δr is the radius of the robot, and δn is a conservative
parameter to account for errors in obstacle position measure-
ments and errors in robot pose estimation and control.

The permitted area for our robot is specified as a set of
keep-in polyhedrons and a set of keep-out polyhedrons. The
robot is required to be in at least one keep-in polyhedron
and outside all keep-out polyhedrons at all times. These
polyhedrons are subsets of R3 which can be specified as
vertices, edges, and faces or as a intersection of half-spaces.
We assume that we can freely switch between these two
representations ([28]). The free space that the robot can
traverse is the difference between the union of all the keep-in
polyhedrons and the union of all the keep-out obstacles.

P free =
⋃

i
P keep−in
i −

⋃
j
P keep−out
j (2)

III. BACKGROUND

A. A Note on Notation

Table I lists frequently used variables and functions. Since
some variables have many indices, we choose to use both
sub-scripts and super-scripts to index these variables. For
brevity, when the intended range of a summation is clear
from context, we will abbreviate it. For example,

∑
i,j

aij

would be
n∑
i=1

m∑
j=0

aij if i ranges between 1 and m, and if

j ranges between 0 and m. The trajectory of the robot A,
position of the robot R, angular velocity ω and exponential
coordinates ξ are all functions of time. Most of the time we
suppress the explicit time parameterization ω(t) and will just
write ω. In addition, ω̇ represents the time derivative of the
variable ω.

B. Lie Groups

SO(3) is the group of all rotations in 3 dimensional space.
It is also the set of all 3×3 orthogonal matrices with positive
determinant:

SO(3) = {R ∈ R3×3|RTR = I, det(R) = 1} (3)

The special Euclidean group SE(3) is the group composed
of all rigid body transformation in 3-dimensional Euclidean
space. The group product is defined as the composition of
two rigid body transformation.

A =

[
R d
0 1

]
R ∈ SO(3) d ∈ R3 (4)

If we write an element is a matrix of the form of Equation 4,
the group product for both SO(3) and SE(3) can be expressed
as matrix multiplication.

A ·B = AB A,B ∈ SO(3) or SE(3) (5)

It is often useful to parameterize these groups by their Lie
algebras. It can be shown for the linear operators (̂.)so(3) :

R3 → so(3) and (̂.)se(3) : R6 → se(3) that:

exp ĝ ∈ SO(3) ∀g ∈ R3 (6)

exp ĝ ∈ SE(3) ∀g ∈ R6 (7)

We drop the group subscript on the hat operator and allow
the domain of the argument to distinguish between the two.



R ∈ SO(3) Rotation of robot expressed in world frame I ∈ SO(3) Identity matrix
d ∈ R3 Position of the robot expressed in world frame J : (A(t) : [0, T ]→ SE(3))→ R Jerk functional
A ∈ SE(3) Robot pose expressed in world frame ξ ∈ R3 Exponential coordinates of R
v ∈ R3 Linear velocity of the robot in world frame P ⊂ R3 Polyhedron
ω ∈ R3 Angular velocity of the robot in body frame
exp(·) : so(3)→ SO(3) Exponential map operating a member of so(3) log(·) : SO(3)→ so(3) Inverse of exponential map
exp(·) : se(3)→ SE(3) Exponential map operating a member of se(3) log(·) : SE(3)→ se(3) Inverse of exponential map
·̂ : R3 → so(3) Hat function to so(3) (·)∨ : so(3)→ R3 Inverse of hat function
·̂ : R6 → se(3) Hat function to se(3) (·)∨ : se(3)→ R6 Inverse of hat function

TABLE I: Table of variables, functions, and operators.

If gi is the ith component of g, the hat operators are as
follows:

ĝso(3) =

 0 −g3 g2
g3 0 −g1
−g2 g1 0

 ĝse(3) =

[
ĝso(3) g4:6

0 0

]
(8)

Although it is tempting to parametrize elements of SE(3)
with respect to the Lie algebra like [20], it is more useful for
us to separately consider the rotational (R(t)) and translation
(d(t)) parts of the group. This parametrization will be useful
for enforcing collision avoidance as well as optimizing the
trajectories using a loosely coupled method. For the rota-
tional part, we will use several representations the rotation
matrix R and the standard exponential coordinates at the
identity: ξ such that R = exp ξ̂. It is often useful to represent
a rotation with respect to the integral its angular velocity.

R(t) = I +

∫ t

0

R(τ)ω̂(τ)dτ (9)

This integral has no known closed form solution, except
in the case where ω is of the form n ∗ f(t) for a vector n
and a scalar f(t). In that particular case, the solution is:

R(t) = exp(n̂ ∗
∫ t

0

f(τ)dτ) (10)

The differential form of Equation 9 is also used with (.)∨

being the inverse of (̂.), the angular velocity is [20]:

ω = (RT Ṙ)∨ (11)

C. Connections and Metrics

On a general manifold, the notion of a derivative is
extended by the covariant derivative ([6]). ∇VW represents
the derivative of the vector field W along the direction of
V . Like [30], we choose ∇ to be the affine connection such
that the derivative is consistent with physical rigid body
motion. If V = dA

dt is the velocity vector field, the jerk of
the trajectory A is:

Jerk = ∇V∇V V =

[
ω̈ + 1

2ω × ω̇
d(v̇+ω×v)

dt + ω × (v̇ + ω × v)

]
(12)

Where v is simply the linear velocity ḋ of the trajectory.
To be able to calculate a jerk functional, we also need a

metric to define the inner product 〈V, V 〉. We can choose
any metric of the form [30]:

〈V, V 〉 = α||V 1:3||2 + β||V 4:6||2 (13)

This allows us to define our cost functional J for a trajectory
on SE(3), which takes a total time of T to execute.

J =

T∫
0

〈∇V∇V V,∇V∇V V 〉dt (14)

D. Comparisons

In Section VII-B, we will compare our trajectory gen-
eration to other methods for calculating the minimum jerk
trajectory that are based on intrinsic techniques and are
invariant of coordinate charts on SO(3) and SE(3). Here we
will present the equations needed to compare our work. [1]
uses an interpolation method on R12 which is then projected
back to SE(3). We can compare to this method for small
boundary conditions due to the restriction on the domain of
the projection map.

To for this comparison, we need to map boundary condi-
tions on ω and d to A(t). That work gives:

Ȧ(t) = A(t)

[
ω̂ RT ḋ
0 0

]
(15)

A straight forward calculation finds:

Ä(t) = A

[
ˆ̇ω RT d̈− ω̂RT ḋ
0 0

]
+ ȦA−1Ȧ (16)

From [30], the necessary condition for a minimum jerk
trajectory is:

ω(5) + 2ω × ω(4) + 5
4ω × (ω × ω(3)) + 5

2 ω̇ × ω
3

+ 1
4ω × (ω × (ω × ω̈)) + 3

2ω × (ω̇ × ω̈)− (ω × ω̈)× ω̇
− 1

4 (ω × ω̇)× ω̈ − 3
8ω × ((ω × ω̇)× ω̇)

− 1
8 (ω × (ω × ω̇))× ω̇ = 0

d(6) = 0
(17)

All the methods for trajectory generation try to find a d
and ω which match boundary conditions on both ends of the
curves. With these differential equations, we can not solve
for a closed form solution. We can compare the methods
by numerically calculating the minimum jerk trajectory with
some initial condition and plug the resultant initial and final
boundary conditions into our method and the methods of [1]
and [23].

[23] provides a method for interpolating rotation which
are not minimum jerk. The proposed method assumes that
the rotational trajectory is parameterized as:

R(t) = R0 exp(ât3 + b̂t2 + ĉt) (18)



The angular velocity can be expressed in terms of the
constants a, b, and c by the relation:

ω = K(at3 + bt2 + ct)(3at2 + 2bt+ c) (19)

Where K : R3 → R3×3 is the right Jacobian of the
exponential coordinates as defined by [9]. With this and
the conditions on the initial and final rotations and angular
velocities, we can solve for a, b, and c by setting up a linear
system of equations.

The right Jacobian is given explicitly by [9]:

K(ξ) = I − 1− cos ||ξ||
||ξ||2

ξ̂ +
||ξ|| − sin ||ξ||
||ξ||3

ξ̂2 (20)

IV. OPTIMIZATION METHOD

A. Rotational Optimization

We can approximate ω as a nth order polynomial ω(t) ≈
a0 + a1t+ a2t

2 + ...ant
n where ai ∈ R3

Since the the zeroth derivative of this approximation is
exact at both of the endpoints, the Lagrange error bound can
be used to show that there exist an optimal polynomial p∗(t)
which deviates from ω by Err(t). Err(t) is bounded by:

||Err(t)|| ≤ 1

(n+ 1)!
(
T

2
)n+1 max

t
ω(n+1)(t) (21)

Since we assume inputs to the initial and final conditions
to the trajectory, we can eliminate constraints on the rota-
tional part components by using an endpoint constrained
basis. ω(t) = b0q0(t) + b1q1(t) + ...bnqn(t) for which qi
are nth order polynomials and ω(k)(0) = bk and ω(k)(T ) =
bk+n

2
for k = 1..n2 .

The rotational jerk of the trajectory can now be found as:

∇V∇V V 1:3 =
∑
i

biq̈i +
1

2

∑
i,j

(bi × bj)qiqj (22)

If we stack all of the components of each bi and bibj into
one large 3(n

2

2 + 3n
2 )× 1 vector b, we can write the jerk as:

j(t, b) = E(t)Qb (23)

Where

E(t) =

e(t) 0 0
0 e(t) 0
0 0 e(t)

 (24)

e(t) =
[
1 t t2 ... tn

]
(25)

And Q can be found by appropriate bookkeeping of the
endpoint basis and Equation 22.

The jerk functional can be expressed in polynomial terms
of all the bi if polynomials are integrated in closed form:

j(b) =
∫ T
0
||j(t, b)||2dt =

bTQT (
∫ T
0
ET(t)E(t)dt)Qb = bTMb

(26)

Finding the minimum value of a multivariate quartic poly-
nomial is NP-Hard [24]. However for general polynomials
it can be closely approximated by a sum-of-squares (SOS)
program:

max γ
s.t. j(b)− γ ∈ SOS (27)

With coefficients, this becomes an SDP. For x =[
1 b1 b2 ... bn b21 b1b2 ... bibj

]T
With N being

all zeros, except its top left element which is 1 and Bi being
a basis for the space of matrices B for which bTBb = 0

max γ
s.t. M − γN +

∑
βiBi ∈ SDP

βi ∈ R
(28)

B. Boundary Conditions for Rotation

While this method solves for an optimal trajectory based
on the end conditions of ω, it does not properly handle the
final R(T ) condition. Without a solution to equation 9, we
cannot directly optimize with this endpoint. However, instead
we can compose a second minimum jerk trajectory Rc(t)
with our optimal trajectory Ro(t)

R(t) = Rc(t)Ro(t) (29)

If we assume zero endpoint conditions on ω for Rc(t),
then the optimal trajectory will be along one axis. There-
fore we can use Equation 10 to explicitly solve for Rc(t)
algebraically.

C. Translation Optimization

When adding in the full SE(3) optimization we need to
incorporate the translational elements of Equation 12 into the
jerk functional of Equation 14. In addition, to avoid obsta-
cles, we create a spline with a trajectory segment confined to
be within a convex corridor [12][29][27]. The corresponding
evaluation of Equation 14 results in polynomial terms which
are 6th order with respect to the coefficient variables as
opposed to 4th order for just the rotational part. However,
the need to have many convex polynomials in the corridor,
results in an intractably large amount of variables in the SDP.

To reduce the number of variables, we can reduce the op-
timization to a loosely coupled optimization, where we first
minimize the rotational part of the state and then optimize
the translational part. In the absence of collision constraints,
we see the optimality conditions, given by Equation 17, are
de-coupled between the two parts of the state. Also for a
valid choice of the metric such that α << β would give
the same trajectory if calculated with ω and v being jointly
optimized.

We notice with a known ω, the last terms in the jerk
of 12 are linear with respect to the translational velocity
of the system. Therefore, when we express the translation
components of the cost functional J with respect to a
polynomial basis we get a quadratic form.

∫
〈∇V∇V V 4:6,∇V∇V V 4:6〉dt =

∑
i

bTi Qibi (30)

Where Qi can be calculated in closed form from integrat-
ing out the angular terms of the translational components
of the jerk squared. For the purposes of ensuring collision
avoidance, we choose to represent the translational part of
the state a Bezier basis spline. The Bezier basis has the



convenient property which that each curve segment will
lie with in the convex hull of its control points and thus
confining the trajectory to be inside the convex regions
becomes a linear inequality constraint [12].

d0

d1 d2

d3P̃0

P̃1

P̃2

Fig. 2: Confining the positional part of the trajectory into a
convex corridor defined by polyhedrons. The start and end
points d0 and d3 are fixed, while d1 and d2 are only specified
as continuity constraints. Implicitly, this allows d1 and d2 to
vary within the orange and green regions respectively.

With respect the control point bi of the polynomials rep-
resenting d, this becomes the following quadratic program:

min
b

∑
i b
T
i Hbi

Cb ≤ c
Sb = s

(31)

In the example in Figure 2 where there are three poly-
hedrons, the inequality constraints come from confining the
trajectory segment d0d1 to be inside P̃0, d1d2 to be inside
P̃1, and d2d3 to be inside P̃2. The equality constraints are
from confining d0 and d3 to their locations in space and
imposing continuity from the 1st to the 3rd time derivative
of the spline at the points d1 and d2.

V. DECOMPOSITION

From the given input environment as a set of polyhedrons,
it has been shown that the problem of decomposing into a
minimum number of polyhedrons is NP Hard. [8]. However,
if we accept O(n2) polyhedrons in our decomposition, we
can do the decomposition in polynomial time [8]. In practice,
we do not see this many polyhedrons, especially compared to
the O(r3) number in voxel grid based methods with respect
to the discretization parameter r ([27]).

From a set of polyhedrons, we can find a convex corridor
to confine a trajectory inside of as in [29]. We can represent
each polyhedron P with matrices Λi and ζi [3]:

Pi = {x ∈ R3|Λix ≤ ζi} (32)

Where each row λki of Λi with ζki represents a face of the
ith polyhedron in the corridor.

Pi = {x ∈ R3|(λki )Tx ≤ ζki ∀k} (33)

As in [15], we can avoid a non-convex time allocation
optimization by allowing the polyhedrons to overlap slightly.
We do this by removing faces of smaller polyhedrons border
larger polyhedrons. From [2], we can represent this relax-
ation using set operations on polyhedrons. For Pi and Pi+1

begin two adjacent polyhedrons in the corridor, we define
the boarding row wi to the pair of constraints.

Pi Pi+1

Pi+1

P̃i

wi

Fig. 3: Adjacent polyhedrons with Pi being expanded into
Pi+1 with face wi being removed and replaced with the
necessary face from Pi+1. Depending on the polyhedrons,
multiple faces from Pi+1 may be faces of P̃i

∃r ∈ N ∃γ ∈ R
∣∣∣∣ λri = −γλwi+1

i+1

ζri = γζ
wi+1

i+1
(34)

Which then allows us to defined the relaxed polyhedron P̄i
which is a polyhedron without one of its faces.

P̄i = {x ∈ R3|(λki )Tx ≤ ζki ∀k 6= wi} (35)

Finally we can find the constraints for the polyhedron P̃i
by adding the overlap from the back face with the previous
polyhedron. The intersection of polyhedrons represented by
matrices is done using [3] and the intersection can be done
using the algorithm for the convex hull of the union of two
polyhedrons ([2]). This is valid, because the union of Pi and
(Pi+1 ∩ P̄i) is convex if the face of Pi which borders Pi+1

is a subset of the boarding face of Pi+1. We prove this in
Section X.

P̃i = (Pi+1 ∩ P̄i) ∪ Pi (36)

VI. DYNAMICS AND CONTROL

The system dynamics are those given by Euler’s equations
of motion for a single rigid body.

d

dt


r
ξ
v
ω

 =


v

K(ξ)ω
mF

I−1 (M − ω × Iω)

 (37)

For our system with propulsion force fi at each jet located
at position ri with direction of force ni, the forces and
moments are mapped with the G matrix.

[
F
M

]
=

[
n1 n2 ... n12

r1 × n1 r2 × n2 ... r12 × n12

]
f1
f2
...
f12

 (38)

ν =

[
F
M

]
= G


f1
f2
...
f12

 (39)



Since G is 6× 12, we have multiple sets of jet forces which
map to the same total force and moment. Like in [7], we can
efficiently resolve this redundancy by formulating a quadratic
program to minimize the total actuated force.

arg min
f

∑
i

f2i

s.t. ν = Gf
f ≥ 0

(40)

This QP can be solved by simply checking all the corners
of the linear constraints ([3]). Since G is a constant matrix
for our platform, all matrix inverses can be pre-computed,
which makes the calculation take negligible time.

We can use the same controller as [5] which has been
proven to be exponential stable for small enough errors.

VII. RESULTS

Within our trajectory generation method, we have made
several simplifying assumptions. Firstly that ω is a polyno-
mial as opposed to a sufficiently smooth continuous function.
This approximation can be bounded by Equation 21 if the
maximum 7th derivative of the true minimum jerk trajectory
is known. However we cannot bound this for general trajecto-
ries because it is always possible to generate a trajectory from
Equation 17 with an arbitrarily high initial 7th derivative.
The second approximation is using an SOS optimization to
find a the minimum of a multivariate polynomial, which has
been shown to be a close approximation ([17]). To judge
the quality of our approximation, we compare our method
to a variety of existing methods for generating trajectories
on SO(3) in the absence of obstacles. To the best of our
knowledge, there is no other method which can generate
minimum jerk trajectories defined as in Equation 14, while
respecting obstacles. In addition, Equation 17, is not the
necessary condition for an optimal trajectory with obstacles,
therefore we compare our SE(3) trajectory generation method
to others only in the case of no obstacles.

A. Implementation

We implemented our algorithms in a combination of
python, C++, and MATLAB. We used the Robotics Op-
erating System (ROS) as a communication layer between
the different modules ([25]). We used the computational
geometry library (CGAL) to compute the decomposition
of our environment ([28]). With the Gurobi ([13]) and
SeDuMi ([16]) optimizers as back-ends for the QP and SDP
respectively.

B. Numerical Comparison

We computed a set of 1 second trajectories from the
identity element of SO(3) with random inputs on the initial
conditions of the optimal differential equations (17). The
initial conditions were drawn from uniform random distri-
butions as follows:

ω, ω̇, ω̈, ω(3), ω(4), ω(5) ∈
U([−π2 ,−

π
2 ,−

π
2 ], [π2 ,

π
2 ,

π
2 ])

(41)
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-2.5

-2

-1.5

-1

-0.5

0

Approximation
Exact
Belta
Park

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

ξ2

ξ1

ξ3

t

t

t

Fig. 4: Comparison of an example set of trajectories on SO(3)

Figure 9, shows an example set of trajectories on SO(3)
expressed in terms of exponential coordinates. Our version
of the trajectory is closer to the true minimum jerk trajectory
than the other trajectory generation methods.
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Fig. 5: Comparison of the J of 100 simulated trajecories.
(α = 1, β = 0)

We then computed J using first order numerical inte-
gration for each method. We found that all approximation
methods varied in accuracy depending on the particular
minimum jerk trajectory. To get a representative measure
of the quality of the methods, we took 100 samples from
equation 41 and have plotted the ratio of J of the calculated
trajectory to J of the minimum jerk trajectory in Figure 9
as a measure of the sub-optimality of all the methods. To
compare just the rotational part of the J , we have set the
metric parameters to be α = 1 and β = 0. A distribution
which is closer to being concentrated at 1 is more accurate
than a distribution which is more spread out. This distribution
for our method is closer to 1 than the other methods as
summarized in Table II where we calculate the percent of
the trials under the same cutoffs in Figure 7.

Ratio This Work B&K [1] P&R [23]
2 71 61 4
3 89 86 39
4 98 94 58
5 98 99 86
6 100 100 91

TABLE II: Percent of SO(3) trials under thresholds for ratio
of J/Jmin

Thus from a random trajectory on SO(3), our method is
more likely to produce a trajectory which is closer to optimal.



C. Trajectories in SE(3)

In the case in which the environment is all of R3, we
can compare our method to [1], but not [23] because the
latter only gives a trajectory generation method for the
rotation group. We used the same method as in the previous
subsection to generate random trajectories on SE(3) with the
same range of ω. Since we can calculate the translational
part of Equation 17 in closed form, we sampled from initial
and final derivatives of d as:

d, ḋ, d̈, d(3) ∈
U([−1,−1,−1], [1, 1, 1])

(42)

From Figure 6, we found that our method preformed much
better than the other method, but not as well as the closed
form solution. We can also compare the translational part of
the jerk function of these three trajectories in Figure 7 by
setting α = 0 and β = 1, which shows a great improvement
over the projection method, as also summarized in Table III.
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Fig. 6: Comparison of an example set of trajectories on SE(3)
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Fig. 7: Comparison of the J of 200 simulated trajectories.
(α = 0, β = 1)

Log Ratio This Work B&K [1]
1 70 0
2 100 0
7 100 5
9 100 35
10 100 79
11 100 99.5

TABLE III: Percent of SE(3) trials under thresholds for log
ratio of J/Jmin

We generated trajectories in several environments with ob-
stacles. In Figure 8, we show an example trajectory generated
through the space. The robot starts with an angular velocity

about its x-axis and finishes with an angular velocity about
its y-axis. The trajectory is shown in cyan and successfully
avoids the obstacles.

Fig. 8: SE(3) Trajectory With Obstacles: The red blocks are
obstacles, and the black lines are the edges of bounding
rectangular prisms. The yellow tinted boxes is the computer
corridor which the trajectory is confined within. The robot
is shown in dark blue, and the trajectory is plotted in cyan

Since it is difficult to interpret a full SE(3) trajectory
plotted out, video provides a better visualization of these
trajectories. The video for this environment and others are
available at: https://youtu.be/K3VGIHU_Wv0.

VIII. CONCLUSION

We have presented a new approximation method for
generating minimum jerk trajectories on both SO(3) and
SE(3). We have applied this method to a space robot which
is symmetrical about rotations, but has obstacles in its 3D
environment which it has to avoid. Our method approximates
the angular velocity of the trajectory with a polynomial
basis to be able to solve for the a minimum jerk trajectory
using positive semidefinite programming techniques. Once
a minimum jerk trajectory is found for orientation, we
can solve for the translational trajectory using a quadratic
program. We use a computational geometric decomposition
technique to decompose the non-convex environment into a
set of convex polyhedrons. These convex polyhedrons are
expanded while ensuring that they do not intersect with
obstacles, and then are converted into inequality constraints
for the QP.

We compare our using a numerical evaluation of the
minimum jerk trajectory. We find that our method performs
better than these two other methods on SO(3) and SE(3)
with a sub-optimality factor of at most 4 in 98% of the trials
in SO(3) and at most 2 in 100% of the SE(3) trials. We
also showed an example of our trajectory generation method
on SE(3) with obstacles and implemented a controller for
the dynamics of our system using a PD controller on the
manifold in a simulated environment.
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X. APPENDIX: CONVEX ENVELOPE PROOF
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Fig. 9: Polyderal Relaxation

We need show that the union of the two convex pieces
discussed in section V is convex in order to use the algorithm
in [2]. Figure 9 shows the construction of these two polyhe-
drons in 2D. Since the proof of this is the same for arbitrary
dimensions, we will assume all of these polyhedrons are
in Rn. P0 and P1 are both closed polyhedrons whose
intersection is the Rn−1 dimensional hyper face L. Let the
polyhedron Q = P̄1∩P0 and thus we will show that P1∪Q
is convex.

We note that P0 and P1 are convex polyhedron. Q is the
intersection of convex sets and is thus convex. Since P̄1 is
defined in terms of a intersection of halfspaces, it is also
convex. In addition R = (P̄1−P1)∪L is also convex because
it can be written as the intersection of P̄1 with the halfspace
opposite of the one removed for P1. Since P0 is disjoint from
P1 except for at the hyper face L, from counting the pieces,
Q ⊂ R.

If we now assume that P1 ∪Q is not convex, there exists
two points Ω0 and Ω1 in this set such that a least one point
on the line segment ¯Ω0Ω1 is not in the set P1 ∪ Q. Since
both P0 and Q are convex, Ω0 and Ω1 cannot both lie in
P0 or both lie in Q. Thus we can flip the labeling of these
two points so that Ω0 is in P0 and Ω1 is in P1. Since P̄1

is convex with Ω0 ∈ R and Ω1 ∈ P1, the line ¯Ω0Ω1 must
intersect L. We call this point of intersection Ω∗. All of the
points on ¯Ω0Ω∗ are in Q because Q is convex, and all the
points on ¯Ω∗Ω1 lie in P1 because P1 is convex. Thus all the
points on ¯Ω0Ω1 lie in P1 ∪Q and we have contradicted the
assumption that P1 ∪Q is non-convex.
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